論文の概要: SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models
- arxiv url: http://arxiv.org/abs/2411.02433v1
- Date: Fri, 01 Nov 2024 17:33:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:02:14.745168
- Title: SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models
- Title(参考訳): SLED: 大規模言語モデルにおけるファクチュアリティ向上のための自己ログ進化デコーディング
- Authors: Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian, Chun-Sung Ferng, Heinrich Jiang, Yiran Chen,
- Abstract要約: 大規模言語モデル(LLM)は目覚ましい能力を示しているが、その出力は信頼できないことや、事実的に間違っていることがある。
本稿では,LLMの真性を高める新しいデコードフレームワークであるSelf Logits Evolution Decoding(SLED)を紹介する。
既存の復号法と比較して,SLEDは実写精度を最大20%向上することを示す。
- 参考スコア(独自算出の注目度): 34.3296459569307
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities, but their outputs can sometimes be unreliable or factually incorrect. To address this, we introduce Self Logits Evolution Decoding (SLED), a novel decoding framework that enhances the truthfulness of LLMs without relying on external knowledge bases or requiring further fine-tuning. From an optimization perspective, our SLED framework leverages the latent knowledge embedded within the LLM by contrasting the output logits from the final layer with those from early layers. It then utilizes an approximate gradient approach to enable latent knowledge to guide the self-refinement of outputs, thereby effectively improving factual accuracy. Extensive experiments have been conducted on established benchmarks across a diverse range of model families (LLaMA 2, LLaMA 3, Gemma) and scales (from 2B to 70B), including more advanced architectural configurations such as the mixture of experts (MoE). Our evaluation spans a wide variety of tasks, including multi-choice, open-generation, and adaptations to chain-of-thought reasoning tasks. The results demonstrate that SLED consistently improves factual accuracy by up to 20\% compared to existing decoding methods while maintaining natural language fluency and negligible latency overhead. Furthermore, it can be flexibly combined with other decoding methods to further enhance their performance.
- Abstract(参考訳): 大規模言語モデル(LLM)は目覚ましい能力を示しているが、その出力は信頼できないことや、事実的に間違っていることがある。
これを解決するために,外部知識ベースに依存したり,さらに微調整を必要とすることなく,LLMの真正性を高める新しいデコーディングフレームワークであるSelf Logits Evolution Decoding (SLED)を導入する。
最適化の観点から、私たちのSLEDフレームワークは、最終層からの出力ロジットと初期層からの出力ロジットを対比することにより、LCMに埋め込まれた潜伏した知識を活用する。
次に、近似勾配法を用いて、潜在知識を用いて出力の自己補正を導出し、事実上の精度を効果的に向上する。
さまざまなモデルファミリ(LLaMA 2, LLaMA 3, Gemma)とスケール(2Bから70B)の確立されたベンチマークにおいて、専門家の混在(MoE)のようなより高度なアーキテクチャ構成を含む大規模な実験が行われた。
我々の評価は、多選択、オープンジェネレーション、思考の連鎖的推論タスクへの適応など、幅広いタスクにまたがる。
その結果、SLEDは、自然言語の流速と無視可能な遅延オーバーヘッドを維持しながら、既存の復号法と比較して、一貫した事実精度を最大20倍向上することを示した。
さらに、他の復号法と柔軟に組み合わせることで、さらなる性能向上を図ることができる。
関連論文リスト
- SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
大規模言語モデル(LLM)は、様々な領域において可能性を示しているが、脆弱性のローカライゼーションにおけるその有効性は未解明のままである。
本調査では,ChatGPTや各種オープンソースモデルなど,コード解析に適した10以上のLLMを対象とする。
ゼロショット学習,ワンショット学習,識別的微調整,生成的微調整の4つのパラダイムを用いて,これらのLCMの有効性を検討する。
論文 参考訳(メタデータ) (2024-03-30T08:42:10Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。