論文の概要: Enhancing Single-Slice Segmentation with 3D-to-2D Unpaired Scan Distillation
- arxiv url: http://arxiv.org/abs/2406.12254v2
- Date: Fri, 12 Jul 2024 06:03:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 04:18:12.421382
- Title: Enhancing Single-Slice Segmentation with 3D-to-2D Unpaired Scan Distillation
- Title(参考訳): 3次元から2次元の空洞蒸留による単一スライスセグメンテーションの促進
- Authors: Xin Yu, Qi Yang, Han Liu, Ho Hin Lee, Yucheng Tang, Lucas W. Remedios, Michael E. Kim, Rendong Zhang, Shunxing Bao, Yuankai Huo, Ann Zenobia Moore, Luigi Ferrucci, Bennett A. Landman,
- Abstract要約: 本研究では, 事前学習した3次元モデルを用いて, 2次元単一スライスセグメンテーションを向上する新しい3D-to-2D蒸留フレームワークを提案する。
同じデータ入力を必要とする従来の知識蒸留法とは異なり、我々のアプローチでは、2次元の学生モデルをガイドするために、コントラストのない3次元CTスキャンを採用しています。
- 参考スコア(独自算出の注目度): 21.69523493833432
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 2D single-slice abdominal computed tomography (CT) enables the assessment of body habitus and organ health with low radiation exposure. However, single-slice data necessitates the use of 2D networks for segmentation, but these networks often struggle to capture contextual information effectively. Consequently, even when trained on identical datasets, 3D networks typically achieve superior segmentation results. In this work, we propose a novel 3D-to-2D distillation framework, leveraging pre-trained 3D models to enhance 2D single-slice segmentation. Specifically, we extract the prediction distribution centroid from the 3D representations, to guide the 2D student by learning intra- and inter-class correlation. Unlike traditional knowledge distillation methods that require the same data input, our approach employs unpaired 3D CT scans with any contrast to guide the 2D student model. Experiments conducted on 707 subjects from the single-slice Baltimore Longitudinal Study of Aging (BLSA) dataset demonstrate that state-of-the-art 2D multi-organ segmentation methods can benefit from the 3D teacher model, achieving enhanced performance in single-slice multi-organ segmentation. Notably, our approach demonstrates considerable efficacy in low-data regimes, outperforming the model trained with all available training subjects even when utilizing only 200 training subjects. Thus, this work underscores the potential to alleviate manual annotation burdens.
- Abstract(参考訳): 腹部CT(Single-Slice abdominal Computed Tomography)により,低放射線照射による身体習慣および臓器の健康状態の評価が可能となった。
しかしながら、単一スライスデータはセグメンテーションに2Dネットワークを使用する必要があるが、これらのネットワークは文脈情報を効果的に捉えるのに苦労することが多い。
したがって、同一のデータセットでトレーニングしても、3Dネットワークは通常より優れたセグメンテーション結果が得られる。
本研究では, 事前学習した3Dモデルを用いて, 2次元単一スライスセグメンテーションを向上する新しい3D-to-2D蒸留フレームワークを提案する。
具体的には,3次元表現から予測分布セントロイドを抽出し,クラス内およびクラス間相関を学習することによって2次元学生の指導を行う。
同じデータ入力を必要とする従来の知識蒸留法とは異なり、我々のアプローチでは、2次元の学生モデルをガイドするために、コントラストのない3次元CTスキャンを採用しています。
単一スライス型ボルチモア縦断年代測定(BLSA)データセットから707名の被験者を対象に行った実験により,最先端の2次元多臓器分割法が3次元教師モデルの恩恵を受け,単一スライス型多臓器分割の性能向上を実現していることが示された。
特に,本手法は,訓練対象者200名に過ぎなかった場合においても,訓練対象者全員で訓練したモデルよりも優れ,低データ体制において有意な有効性を示した。
このように、この研究は手作業によるアノテーションの負担を軽減する可能性を浮き彫りにしている。
関連論文リスト
- Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation [3.69758875412828]
クロスD Conv 演算はフーリエ領域における位相シフトを学習することで次元ギャップを橋渡しする。
本手法は2次元と3次元の畳み込み操作間のシームレスな重み移動を可能にする。
論文 参考訳(メタデータ) (2024-11-02T13:03:44Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
相補的な2次元拡散モデルを用いた新しい3次元脳分割法を提案する。
私たちのゴールは、個々の主題に対して完全なラベルを必要とせずに、信頼性の高いセグメンテーション品質を達成することです。
論文 参考訳(メタデータ) (2024-07-17T06:14:53Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retinal OCT Images with Full
and Sparse Annotations [32.69359482975795]
本研究は, ハイブリッド2D-3D畳み込みニューラルネットワーク(CNN)を基盤として, OCTボリュームから連続した3次元網膜層表面を得るための新しい枠組みを提案する。
人工的データセットと3つのパブリックな臨床データセットの実験により、我々のフレームワークは、潜在的運動補正のためにBスキャンを効果的に調整できることを示した。
論文 参考訳(メタデータ) (2023-12-04T08:32:31Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
本研究では,3次元画像処理における中間特徴表現を用いた2次元ネットワークの適応手法を提案する。
我々は、ベンチマークとして3D MedMNISTデータセットと、既存の手法に匹敵する数百の高分解能CTまたはMRIスキャンからなる2つの実世界のデータセットを示す。
論文 参考訳(メタデータ) (2023-07-13T08:27:09Z) - Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
ラベル効率のよい3D-to-2Dセグメンテーションのための新しい畳み込みニューラルネットワーク(CNN)と自己教師付き学習(SSL)手法を提案する。
異なるデータセットの結果から、提案されたCNNは、ラベル付きデータに制限のあるシナリオにおいて、Diceスコアの最大8%まで、アートの状態を著しく改善することが示された。
論文 参考訳(メタデータ) (2023-07-06T14:16:25Z) - 3D Point Cloud Pre-training with Knowledge Distillation from 2D Images [128.40422211090078]
本稿では,2次元表現学習モデルから直接知識を取得するために,3次元ポイントクラウド事前学習モデルの知識蒸留手法を提案する。
具体的には、3Dポイントクラウドから概念特徴を抽出し、2D画像からの意味情報と比較するクロスアテンション機構を提案する。
このスキームでは,2次元教師モデルに含まれるリッチな情報から,クラウド事前学習モデルを直接学習する。
論文 参考訳(メタデータ) (2022-12-17T23:21:04Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
カメラ空間における光マーチング (RiCS) は、3次元における前景物体の自己閉塞を2次元の自己閉塞マップに表現する新しい手法である。
表現マップは画像の質を高めるだけでなく,時間的コヒーレントな複雑な影効果をモデル化できることを示す。
論文 参考訳(メタデータ) (2022-05-14T05:35:35Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
対象臓器アノテーションの限られたトレーニングサンプルを用いて, 正確な臓器分類を行うための3次元ショットセグメンテーションフレームワークを提案する。
U-Netのようなネットワークは、サポートデータの2次元スライスとクエリイメージの関係を学習することでセグメンテーションを予測するように設計されている。
異なる臓器のアノテーションを付加した3つの3次元CTデータセットを用いて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2020-11-19T01:44:55Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
本稿では,RGB画像と大規模に異なる複数の身体部位の3次元メッシュを推定することを目的とする。
主な課題は、2D画像のすべての身体部分の3Dアノテーションを完備するトレーニングデータがないことである。
本稿では,D2S(Deep-to-scale)投影法を提案する。
論文 参考訳(メタデータ) (2020-10-27T03:31:35Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
3次元の地平線アノテーションを持つ大規模な人的データセットは、野生では入手が困難である。
既存の2Dデータセットを高品質な3Dポーズマッチングで拡張することで、この問題に対処する。
結果として得られるアノテーションは、3Dのプロシージャネットワークをスクラッチからトレーニングするのに十分である。
論文 参考訳(メタデータ) (2020-04-07T20:21:18Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D畳み込みニューラルネットワーク(CNN)は、多くのディープラーニングタスクにおいて、2D CNNよりも優れたパフォーマンスを示し始めている。
3D CNNにトランスファー学習を適用することは、パブリックにトレーニング済みの3Dモデルがないために困難である。
本研究では,ボリュームデータの2次元戦略的表現,すなわち2.75Dを提案する。
その結果,2次元CNNネットワークをボリューム情報学習に用いることが可能となった。
論文 参考訳(メタデータ) (2020-02-11T08:24:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。