論文の概要: Chronic Obstructive Pulmonary Disease Prediction Using Deep Convolutional Network
- arxiv url: http://arxiv.org/abs/2411.02449v3
- Date: Sun, 28 Sep 2025 22:02:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 14:13:47.124149
- Title: Chronic Obstructive Pulmonary Disease Prediction Using Deep Convolutional Network
- Title(参考訳): Deep Convolutional Network を用いた慢性閉塞性肺疾患の予測
- Authors: Shahran Rahman Alve, Muhammad Zawad Mahmud, Samiha Islam, Mohammad Monirujjaman Khan,
- Abstract要約: 本研究では,慢性閉塞性肺疾患(COPD)を検出するための呼吸音解析のための深部畳み込みニューラルネットワーク(CNN)を用いたアプローチを提案する。
このシステムは、病気の重症度を軽度、中等度、重度に分類する。
ICBHIデータベースの評価は10倍のクロスバリデーションと90%の精度で96%の精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence and deep learning are increasingly applied in the clinical domain, particularly for early and accurate disease detection using medical imaging and sound. Due to limited trained personnel, there is a growing demand for automated tools to support clinicians in managing rising patient loads. Respiratory diseases such as cancer and diabetes remain major global health concerns requiring timely diagnosis and intervention. Auscultation of lung sounds, combined with chest X-rays, is an established diagnostic method for respiratory illness. This study presents a Deep Convolutional Neural Network (CNN)-based approach for the analysis of respiratory sound data to detect Chronic Obstructive Pulmonary Disease (COPD). Acoustic features extracted with the Librosa library, including Mel-Frequency Cepstral Coefficients (MFCCs), Mel-Spectrogram, Chroma, Chroma (Constant Q), and Chroma CENS, were used in training. The system also classifies disease severity as mild, moderate, or severe. Evaluation on the ICBHI database achieved 96% accuracy using 10-fold cross-validation and 90% accuracy without cross-validation. The proposed network outperforms existing methods, demonstrating potential as a practical tool for clinical deployment.
- Abstract(参考訳): 人工知能と深層学習は、臨床領域、特に医療画像と音声を用いた早期かつ正確な疾患検出にますます応用されている。
研修要員が限られているため、患者負担の増加を管理するために臨床医を支援する自動化ツールの需要が高まっている。
がんや糖尿病などの呼吸器疾患は、タイムリーな診断と介入を必要とする主要な世界的な健康上の問題のままである。
胸部X線と併用した肺音の聴取は呼吸疾患の診断方法として確立された。
本研究では,慢性閉塞性肺疾患(COPD)を検出するための呼吸音データ解析のための深部畳み込みニューラルネットワーク(CNN)を用いたアプローチを提案する。
訓練には,Mel-Frequency Cepstral Coefficients (MFCCs), Mel-Spectrogram, Chroma, Chroma (Constant Q), Chroma CENSなどのLibrosaライブラリで抽出した音響特性を使用した。
このシステムは、病気の重症度を軽度、中等度、重度に分類する。
ICBHIデータベースの評価は10倍のクロスバリデーションと90%の精度で96%の精度を達成した。
提案するネットワークは既存の手法よりも優れており,臨床展開のための実用的なツールとしての可能性を示している。
関連論文リスト
- Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - Rene: A Pre-trained Multi-modal Architecture for Auscultation of Respiratory Diseases [5.810320353233697]
本稿では,呼吸音の認識に適した大規模モデルであるReneを紹介する。
我々の革新的なアプローチは、事前訓練された音声認識モデルを用いて呼吸音を処理している。
我々は,Reneアーキテクチャを用いた実時間呼吸音識別システムを開発した。
論文 参考訳(メタデータ) (2024-05-13T03:00:28Z) - Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI [0.0]
この研究は、異なる肺疾患をウイルス性肺炎、細菌性肺炎、COVID、結核、正常肺の5つのグループに分類することに焦点を当てている。
CNN、ハイブリッドモデル、アンサンブル、トランスフォーマー、Big Transferなど、さまざまなモデルを調査します。
注目すべきは、Xceptionモデルは5倍のクロスバリデーションによって微調整され、96.21%の精度を達成することである。
論文 参考訳(メタデータ) (2024-04-17T14:34:35Z) - CoVid-19 Detection leveraging Vision Transformers and Explainable AI [0.0]
肺疾患は、死因のトップ30のうち5つに原因がある。
早期に肺疾患を診断することが重要である。
ディープラーニングアルゴリズムは、自律的、迅速、そして正確な肺疾患の同定に重要な可能性を秘めている。
論文 参考訳(メタデータ) (2023-07-29T17:45:27Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
症状検査システムは、患者に症状を問い合わせ、迅速で手頃な価格の医療評価を行う。
本稿では,論理正則化を用いたニューラルネットワークの教師付き学習に基づく新しい手法を提案する。
以上の結果から,本手法は診断回数や症状が大きい場合の診断精度において,最も優れた方法であることがわかった。
論文 参考訳(メタデータ) (2022-06-02T07:57:17Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
心臓病は、世界中の多くの人々の生活を妨げる最も致命的な病気の1つである。
本稿では,健康な人と非健康な人の分類に1次元畳み込みニューラルネットワークを用いた新しいディープラーニングアーキテクチャを提案する。
提案するネットワークは、データセット上で97%以上のトレーニング精度と96%のテスト精度を達成する。
論文 参考訳(メタデータ) (2021-05-22T22:00:57Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - Can Machine Learning Be Used to Recognize and Diagnose Coughs? [3.2265234594751155]
呼吸器感染症のスクリーニングには,低複雑性,自動認識,診断ツールが有用である。
コンボリューショナルニューラルネットワーク (CNN) を用いて, 環境音のコアを検出し, 3つの潜在的な疾患を診断する。
提案された検出モデルと診断モデルはどちらも精度が89%以上であり、計算効率も高い。
論文 参考訳(メタデータ) (2020-04-01T20:14:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。