論文の概要: Generative Unfolding with Distribution Mapping
- arxiv url: http://arxiv.org/abs/2411.02495v1
- Date: Mon, 04 Nov 2024 19:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:58:11.958235
- Title: Generative Unfolding with Distribution Mapping
- Title(参考訳): 分布マッピングによる生成的展開
- Authors: Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer, Tilman Plehn,
- Abstract要約: モデルが正しい条件付き確率を学習できるように、2つのモーフィング手法、Schr"odinger Bridges と Direct Diffusion を拡張する方法を示す。
結果は、Z + 2-jetsの22次元位相空間を記述する新しいデータセットと同様に、単一のジェットサブ構造の標準ベンチマークデータセットで示される。
- 参考スコア(独自算出の注目度): 0.0837622912636323
- License:
- Abstract: Machine learning enables unbinned, highly-differential cross section measurements. A recent idea uses generative models to morph a starting simulation into the unfolded data. We show how to extend two morphing techniques, Schr\"odinger Bridges and Direct Diffusion, in order to ensure that the models learn the correct conditional probabilities. This brings distribution mapping to a similar level of accuracy as the state-of-the-art conditional generative unfolding methods. Numerical results are presented with a standard benchmark dataset of single jet substructure as well as for a new dataset describing a 22-dimensional phase space of Z + 2-jets.
- Abstract(参考訳): 機械学習は、未結合で高精度な断面測定を可能にする。
最近のアイデアでは、生成モデルを使用して開始シミュレーションを展開データに変形させる。
モデルが正しい条件付き確率を学習できるように、2つのモーフィング手法、Schr\odinger Bridges と Direct Diffusion を拡張する方法を示す。
これにより、分布マッピングは、最先端の条件付き生成展開法と同様の精度で実現される。
数値計算の結果は、Z + 2-jetsの22次元位相空間を記述する新しいデータセットと同様に、単一ジェットサブ構造の標準ベンチマークデータセットで示される。
関連論文リスト
- Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
両手インタラクションに先立って生成を学習する新しいフレームワークであるInterHandGenを提案する。
サンプリングにアンチペネティフィケーションと合成フリーガイダンスを組み合わせることで、プラウシブルな生成を可能にする。
本手法は, 妥当性と多様性の観点から, ベースライン生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-03-26T06:35:55Z) - Mirror Diffusion Models for Constrained and Watermarked Generation [41.27274841596343]
ミラー拡散モデル(MDM)は、トラクタビリティを損なうことなく凸制約セット上のデータを生成する新しい拡散モデルである。
安全とプライバシーのために、我々は、生成したデータに目に見えないが定量的な情報を埋め込む新しいメカニズムとして制約セットを探求する。
私たちの研究は、複雑なドメイン上での抽出可能な拡散を学習する新しいアルゴリズムの機会をもたらします。
論文 参考訳(メタデータ) (2023-10-02T14:26:31Z) - Improving Generative Model-based Unfolding with Schr\"{o}dinger Bridges [14.989614554242229]
機械学習に基づく展開により、未結合かつ高次元の断面積測定が可能になった。
我々はシュレーディンガーブリッジと拡散モデルを用いてSBUnfoldを作成することを提案する。
SBUnfoldは,合成Z+jetsデータセット上でのアート手法の状態と比較して,優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-08-23T18:01:01Z) - DiffComplete: Diffusion-based Generative 3D Shape Completion [114.43353365917015]
3次元レンジスキャンにおける形状完成のための拡散に基づく新しいアプローチを提案する。
私たちはリアリズム、マルチモダリティ、高忠実さのバランスを取ります。
DiffCompleteは2つの大規模3次元形状補完ベンチマークに新しいSOTA性能を設定する。
論文 参考訳(メタデータ) (2023-06-28T16:07:36Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
本稿では,ガウス過程の定式化に基づく形状適合/登録手法を提案する。
様々な変換を持つ2次元の小さなデータセットと耳の3次元データセットの両方で実験が行われる。
論文 参考訳(メタデータ) (2022-03-26T16:48:27Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - SegDiff: Image Segmentation with Diffusion Probabilistic Models [81.16986859755038]
拡散確率法は最先端の画像生成に使用される。
画像分割を行うためにそのようなモデルを拡張する方法を提案する。
この方法は、トレーニング済みのバックボーンに頼ることなく、エンドツーエンドで学習する。
論文 参考訳(メタデータ) (2021-12-01T10:17:25Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Normal-bundle Bootstrap [2.741266294612776]
本稿では,与えられたデータセットの幾何学的構造を保持する新しいデータを生成する手法を提案する。
微分幾何学における多様体学習と概念のアルゴリズムにインスパイアされた本手法は,基礎となる確率測度を余分化測度に分解する。
本手法は, 密度リッジおよび関連統計量の推定に応用し, オーバーフィッティングを低減するためにデータ拡張を行う。
論文 参考訳(メタデータ) (2020-07-27T21:14:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。