論文の概要: GraphXAIN: Narratives to Explain Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2411.02540v2
- Date: Fri, 08 Nov 2024 08:29:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 11:36:10.549427
- Title: GraphXAIN: Narratives to Explain Graph Neural Networks
- Title(参考訳): GraphXAIN: グラフニューラルネットワークの解説
- Authors: Mateusz Cedro, David Martens,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データの機械学習において強力な技術である。
既存のGNN説明法は、しばしばサブグラフや特徴重要度スコアなどの技術出力を出力する。
本稿では,GNN による個人予測を自然言語で記述する GraphXAIN を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Graph Neural Networks (GNNs) are a powerful technique for machine learning on graph-structured data, yet they pose interpretability challenges, especially for non-expert users. Existing GNN explanation methods often yield technical outputs such as subgraphs and feature importance scores, which are not easily understood. Building on recent insights from social science and other Explainable AI (XAI) methods, we propose GraphXAIN, a natural language narrative that explains individual predictions made by GNNs. We present a model-agnostic and explainer-agnostic XAI approach that complements graph explainers by generating GraphXAINs, using Large Language Models (LLMs) and integrating graph data, individual predictions from GNNs, explanatory subgraphs, and feature importances. We define XAI Narratives and XAI Descriptions, highlighting their distinctions and emphasizing the importance of narrative principles in effective explanations. By incorporating natural language narratives, our approach supports graph practitioners and non-expert users, aligning with social science research on explainability and enhancing user understanding and trust in complex GNN models. We demonstrate GraphXAIN's capabilities on a real-world graph dataset, illustrating how its generated narratives can aid understanding compared to traditional graph explainer outputs or other descriptive explanation methods.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データ上で機械学習を行うための強力なテクニックだが、特に専門家でないユーザにとっては、解釈可能性の問題が発生する。
既存のGNN説明法は、しばしばサブグラフや特徴重要度スコアなどの技術的出力をもたらすが、容易には理解できない。
社会科学や他の説明可能なAI(XAI)手法の最近の知見に基づいて,GNNによる個人予測を記述した自然言語物語であるGraphXAINを提案する。
本稿では,グラフ記述子の生成,Large Language Models (LLM) の利用,グラフデータの統合,GNNからの個々の予測,説明サブグラフ,特徴的重要性を補完するモデルに依存しないXAI手法を提案する。
我々は、XAIナラティブとXAI記述を定義し、それらの区別を強調し、効果的な説明における物語の原則の重要性を強調する。
自然言語の物語を取り入れることで、グラフ実践者や非専門家のユーザを支援し、説明可能性に関する社会科学研究と連携し、複雑なGNNモデルにおけるユーザ理解と信頼を高める。
実世界のグラフデータセット上でGraphXAINの能力を実演し、その生成した物語が従来のグラフ説明器の出力や他の記述的説明方法と比較して理解に役立っているかを説明する。
関連論文リスト
- Verbalized Graph Representation Learning: A Fully Interpretable Graph Model Based on Large Language Models Throughout the Entire Process [8.820909397907274]
完全に解釈可能な言語グラフ表現学習法(VGRL)を提案する。
従来のグラフ機械学習モデルとは対照的に、VGRLはこのパラメータ空間をテキスト記述に制約する。
VGRLの有効性を実証的に評価するために,いくつかの研究を行った。
論文 参考訳(メタデータ) (2024-10-02T12:07:47Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
論文 参考訳(メタデータ) (2023-12-16T08:14:11Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
グラフ強化グラフニューラルネットワーク(SGNN)は,GNNの表現力を高めるために導入された。
本稿では, GNN の最近の解説者の一つである PGExplainer を SGNN に適用する。
本稿では,グラフ分類タスクにおけるSGNNの決定過程を説明することに成功していることを示す。
論文 参考訳(メタデータ) (2022-09-16T13:39:10Z) - Evaluating Explainability for Graph Neural Networks [21.339111121529815]
本稿では,様々なベンチマークデータセットを生成することができる合成グラフデータ生成器ShapeGGenを紹介する。
ShapeGGenといくつかの実世界のグラフデータセットを、オープンソースのグラフ説明可能性ライブラリであるGraphXAIに含めています。
論文 参考訳(メタデータ) (2022-08-19T13:43:52Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - On Explainability of Graph Neural Networks via Subgraph Explorations [48.56936527708657]
本稿では,グラフニューラルネットワーク(GNN)を説明するための新しい手法,SubgraphXを提案する。
我々の研究は,GNNのサブグラフを明示的に識別する最初の試みである。
論文 参考訳(メタデータ) (2021-02-09T22:12:26Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - GraphLIME: Local Interpretable Model Explanations for Graph Neural
Networks [45.824642013383944]
グラフニューラルネットワーク(GNN)は,グラフ構造化データを効果的に表現することに成功した。
本稿では,Hilbert-Schmidt Independence Criterion (HSIC) Lasso を用いたグラフの局所的解釈可能なモデル記述法 GraphLIME を提案する。
論文 参考訳(メタデータ) (2020-01-17T09:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。