TI-PREGO: Chain of Thought and In-Context Learning for Online Mistake Detection in PRocedural EGOcentric Videos
- URL: http://arxiv.org/abs/2411.02570v1
- Date: Mon, 04 Nov 2024 20:03:06 GMT
- Title: TI-PREGO: Chain of Thought and In-Context Learning for Online Mistake Detection in PRocedural EGOcentric Videos
- Authors: Leonardo Plini, Luca Scofano, Edoardo De Matteis, Guido Maria D'Amely di Melendugno, Alessandro Flaborea, Andrea Sanchietti, Giovanni Maria Farinella, Fabio Galasso, Antonino Furnari,
- Abstract summary: No technique effectively detects open-set procedural mistakes online.
One branch continuously performs step recognition from the input egocentric video.
The other anticipates future steps based on the recognition module's output.
- Score: 48.126793563151715
- License:
- Abstract: Identifying procedural errors online from egocentric videos is a critical yet challenging task across various domains, including manufacturing, healthcare, and skill-based training. The nature of such mistakes is inherently open-set, as unforeseen or novel errors may occur, necessitating robust detection systems that do not rely on prior examples of failure. Currently, however, no technique effectively detects open-set procedural mistakes online. We propose a dual branch architecture to address this problem in an online fashion: one branch continuously performs step recognition from the input egocentric video, while the other anticipates future steps based on the recognition module's output. Mistakes are detected as mismatches between the currently recognized action and the action predicted by the anticipation module. The recognition branch takes input frames, predicts the current action, and aggregates frame-level results into action tokens. The anticipation branch, specifically, leverages the solid pattern-matching capabilities of Large Language Models (LLMs) to predict action tokens based on previously predicted ones. Given the online nature of the task, we also thoroughly benchmark the difficulties associated with per-frame evaluations, particularly the need for accurate and timely predictions in dynamic online scenarios. Extensive experiments on two procedural datasets demonstrate the challenges and opportunities of leveraging a dual-branch architecture for mistake detection, showcasing the effectiveness of our proposed approach. In a thorough evaluation including recognition and anticipation variants and state-of-the-art models, our method reveals its robustness and effectiveness in online applications.
Related papers
- Few-Shot API Attack Detection: Overcoming Data Scarcity with GAN-Inspired Learning [9.035212370386846]
This paper proposes a novel few-shot detection approach motivated by Natural Language Processing (NLP) and advanced Generative Adrialversa Network (GAN)-inspired techniques.
Our method enhances the contextual understanding of API requests, leading to improved anomaly detection compared to traditional methods.
arXiv Detail & Related papers (2024-05-18T11:10:45Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
We introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI.
Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale.
arXiv Detail & Related papers (2024-05-06T07:44:07Z) - PREGO: online mistake detection in PRocedural EGOcentric videos [49.72812518471056]
We propose PREGO, the first online one-class classification model for mistake detection in egocentric videos.
PREGO is based on an online action recognition component to model the current action, and a symbolic reasoning module to predict the next actions.
We evaluate PREGO on two procedural egocentric video datasets, Assembly101 and Epic-tent, which we adapt for online benchmarking of procedural mistake detection.
arXiv Detail & Related papers (2024-04-02T13:27:28Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - EANet: Expert Attention Network for Online Trajectory Prediction [5.600280639034753]
Expert Attention Network is a complete online learning framework for trajectory prediction.
We introduce expert attention, which adjusts the weights of different depths of network layers, avoiding the model updated slowly due to gradient problem.
Furthermore, we propose a short-term motion trend kernel function which is sensitive to scenario change, allowing the model to respond quickly.
arXiv Detail & Related papers (2023-09-11T07:09:40Z) - ScatterUQ: Interactive Uncertainty Visualizations for Multiclass Deep Learning Problems [0.0]
ScatterUQ is an interactive system that provides targeted visualizations to allow users to better understand model performance in context-driven uncertainty settings.
We demonstrate the effectiveness of ScatterUQ to explain model uncertainty for a multiclass image classification on a distance-aware neural network trained on Fashion-MNIST.
Our results indicate that the ScatterUQ system should scale to arbitrary, multiclass datasets.
arXiv Detail & Related papers (2023-08-08T21:17:03Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Dynamic Inference: A New Approach Toward Efficient Video Action
Recognition [69.9658249941149]
Action recognition in videos has achieved great success recently, but it remains a challenging task due to the massive computational cost.
We propose a general dynamic inference idea to improve inference efficiency by leveraging the variation in the distinguishability of different videos.
arXiv Detail & Related papers (2020-02-09T11:09:56Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.