Low-Rank Adaptive Structural Priors for Generalizable Diabetic Retinopathy Grading
- URL: http://arxiv.org/abs/2504.19362v1
- Date: Sun, 27 Apr 2025 21:40:02 GMT
- Title: Low-Rank Adaptive Structural Priors for Generalizable Diabetic Retinopathy Grading
- Authors: Yunxuan Wang, Ray Yin, Yumei Tan, Hao Chen, Haiying Xia,
- Abstract summary: We introduce Low-rank Adaptive Structural Priors (LoASP), a plug-and-play framework designed for seamless integration with existing deep learning models.<n>LoASP improves generalization by learning adaptive structural representations that are finely tuned to the complexities of diabetic retinopathy diagnosis.<n> visualizations reveal that the learned structural priors intuitively align with the intricate architecture of the vessels and lesions.
- Score: 3.4531529749205347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic retinopathy (DR), a serious ocular complication of diabetes, is one of the primary causes of vision loss among retinal vascular diseases. Deep learning methods have been extensively applied in the grading of diabetic retinopathy (DR). However, their performance declines significantly when applied to data outside the training distribution due to domain shifts. Domain generalization (DG) has emerged as a solution to this challenge. However, most existing DG methods overlook lesion-specific features, resulting in insufficient accuracy. In this paper, we propose a novel approach that enhances existing DG methods by incorporating structural priors, inspired by the observation that DR grading is heavily dependent on vessel and lesion structures. We introduce Low-rank Adaptive Structural Priors (LoASP), a plug-and-play framework designed for seamless integration with existing DG models. LoASP improves generalization by learning adaptive structural representations that are finely tuned to the complexities of DR diagnosis. Extensive experiments on eight diverse datasets validate its effectiveness in both single-source and multi-source domain scenarios. Furthermore, visualizations reveal that the learned structural priors intuitively align with the intricate architecture of the vessels and lesions, providing compelling insights into their interpretability and diagnostic relevance.
Related papers
- Divergent Domains, Convergent Grading: Enhancing Generalization in Diabetic Retinopathy Grading [8.59772105902647]
Diabetic Retinopathy (DR) constitutes 5% of global blindness cases.
We introduce a novel deep learning method for achieving domain generalization (DG) in DR grading.
Our method demonstrates significant improvements over the strong Empirical Risk Minimization baseline.
arXiv Detail & Related papers (2024-11-04T21:09:24Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
We study the problem of generalizing a model to unseen distributions or domains in diabetic retinopathy classification.
We propose a simple and effective domain generalization (DG) approach that achieves self-distillation in vision transformers.
We report the performance of several state-of-the-art DG methods on open-source DR classification datasets.
arXiv Detail & Related papers (2023-10-26T09:11:55Z) - CauDR: A Causality-inspired Domain Generalization Framework for
Fundus-based Diabetic Retinopathy Grading [11.982719279583002]
A computer-aided DR grading system has a significant impact on helping ophthalmologists with rapid screening and diagnosis.
Recent advances in fundus photography have precipitated the development of novel retinal imaging cameras.
Most deep learning-based algorithms for DR grading demonstrate limited generalization across domains.
arXiv Detail & Related papers (2023-09-27T08:43:49Z) - Exploring the Transfer Learning Capabilities of CLIP in Domain
Generalization for Diabetic Retinopathy [7.649900082537232]
Cross-domain generalization is a challenging problem in the medical domain.
Recent studies have shown the effectiveness of using CLIP to handle the DG problem in natural images.
In this study, we investigate CLIP's transfer learning capabilities and its potential for cross-domain generalization in diabetic retinopathy (DR) classification.
arXiv Detail & Related papers (2023-08-27T22:02:41Z) - Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains [6.147573427718534]
We propose a novel unified framework named Generalizable Diabetic Retinopathy Grading Network (GDRNet)
GDRNet consists of three vital components: fundus visual-artifact augmentation (FundusAug), dynamic hybrid-supervised loss (DahLoss), and domain-class-aware re-balancing (DCR)
arXiv Detail & Related papers (2023-07-10T07:24:44Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions.
It can be shown that our approach outperforms existing domain strategies.
arXiv Detail & Related papers (2021-07-20T09:44:07Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.