論文の概要: Intelligent Video Recording Optimization using Activity Detection for Surveillance Systems
- arxiv url: http://arxiv.org/abs/2411.02632v1
- Date: Mon, 04 Nov 2024 21:44:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:58.492654
- Title: Intelligent Video Recording Optimization using Activity Detection for Surveillance Systems
- Title(参考訳): サーベイランスシステムにおける能動検出を用いたインテリジェントビデオ記録最適化
- Authors: Youssef Elmir, Hayet Touati, Ouassila Melizou,
- Abstract要約: 本稿では,アクティビティ検出に焦点をあてたビデオ記録ソリューションを提案する。
提案手法は,フレームサブトラクションによる動き検出とYOLOv9を用いた物体検出を組み合わせたハイブリッド手法を用いる。
開発したモデルでは,車検出では0.855,人検出では0.884の精度測定値が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Surveillance systems often struggle with managing vast amounts of footage, much of which is irrelevant, leading to inefficient storage and challenges in event retrieval. This paper addresses these issues by proposing an optimized video recording solution focused on activity detection. The proposed approach utilizes a hybrid method that combines motion detection via frame subtraction with object detection using YOLOv9. This strategy specifically targets the recording of scenes involving human or car activity, thereby reducing unnecessary footage and optimizing storage usage. The developed model demonstrates superior performance, achieving precision metrics of 0.855 for car detection and 0.884 for person detection, and reducing the storage requirements by two-thirds compared to traditional surveillance systems that rely solely on motion detection. This significant reduction in storage highlights the effectiveness of the proposed approach in enhancing surveillance system efficiency. Nonetheless, some limitations persist, particularly the occurrence of false positives and false negatives in adverse weather conditions, such as strong winds.
- Abstract(参考訳): 監視システムは大量の映像の管理に苦慮することが多く、その多くは無関係であり、非効率な保存とイベント検索の課題に繋がる。
本稿では,アクティビティ検出に焦点をあてたビデオ録画ソリューションを提案することで,これらの課題に対処する。
提案手法は,フレームサブトラクションによる動き検出とYOLOv9を用いた物体検出を組み合わせたハイブリッド手法を用いる。
この戦略は、人や車の活動に関わるシーンの記録を特に対象とし、不要な映像を減らし、ストレージ使用量を最適化する。
開発したモデルでは,車検出に0.855,人検出に0.884,移動検出にのみ依存する従来の監視システムに比べて2/3の精度で保存要求を低減した。
このストレージの大幅な削減は、監視システムの効率を高めるための提案手法の有効性を強調している。
しかしながら、いくつかの制限は持続し、特に強い風のような悪天候条件下での偽陽性と偽陰性の発生は続く。
関連論文リスト
- Practical Video Object Detection via Feature Selection and Aggregation [18.15061460125668]
ビデオオブジェクト検出(VOD)は、オブジェクトの外観における高いフレーム間変動と、いくつかのフレームにおける多様な劣化を懸念する必要がある。
現代のアグリゲーション法のほとんどは、高い計算コストに苦しむ2段階検出器用に調整されている。
この研究は、特徴選択と集約の非常に単純だが強力な戦略を考案し、限界計算コストでかなりの精度を得る。
論文 参考訳(メタデータ) (2024-07-29T02:12:11Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
本稿では,木構造メモリを用いてトラッカーと検出器を動的に関連付け,自己回復を可能にするRTrackerを提案する。
具体的には,正負と負のターゲットサンプルを時系列に保存し,維持する正負のツリー構造メモリを提案する。
我々の中核となる考え方は、正と負の目標カテゴリーの支持サンプルを用いて、目標損失の信頼性評価のための相対的距離に基づく基準を確立することである。
論文 参考訳(メタデータ) (2024-03-28T08:54:40Z) - Traffic Video Object Detection using Motion Prior [16.63738085066699]
本稿では,先行動作を利用した2つの革新的な手法を提案し,トラヒックビデオオブジェクト検出の性能を向上する。
まず、時間情報統合を導く前に動きを利用する新しい自己認識モジュールを導入する。
次に、擬似ラベリング機構を用いて、半教師付き設定のためのノイズの多い擬似ラベルを除去する。
論文 参考訳(メタデータ) (2023-11-16T18:59:46Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
ドライバーの気晴らしが道路事故の主要な原因であることが知られている。
State-of-the-artメソッドはレイテンシを無視しながら精度を優先する。
本稿では,ビデオフレーム間の時間的関係を無視した時間効率な検出モデルを提案する。
論文 参考訳(メタデータ) (2022-10-17T21:22:41Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
時間的行動検出(TAD)のようなトリミングされていないビデオ理解は、しばしば計算資源に対する膨大な需要の苦痛に悩まされる。
我々は、効率的なエンド・ツー・エンドの時間的行動検出(ETAD)のための統合されたフレームワークを構築している。
ETADはTHUMOS-14とActivityNet-1.3の両方で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-14T21:16:21Z) - E^2TAD: An Energy-Efficient Tracking-based Action Detector [78.90585878925545]
本稿では,事前定義されたキーアクションを高精度かつ効率的にローカライズするためのトラッキングベースソリューションを提案する。
UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC)で優勝した。
論文 参考訳(メタデータ) (2022-04-09T07:52:11Z) - Argus++: Robust Real-time Activity Detection for Unconstrained Video
Streams with Overlapping Cube Proposals [85.76513755331318]
Argus++は、制約のないビデオストリームを分析するための堅牢なリアルタイムアクティビティ検出システムである。
システム全体としては、スタンドアロンのコンシューマレベルのハードウェア上でのリアルタイム処理に最適化されている。
論文 参考訳(メタデータ) (2022-01-14T03:35:22Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Finding Action Tubes with a Sparse-to-Dense Framework [62.60742627484788]
本稿では,ビデオストリームからのアクションチューブ提案を1つのフォワードパスでスパース・トゥ・デンス方式で生成するフレームワークを提案する。
UCF101-24, JHMDB-21, UCFSportsベンチマークデータセット上で, 本モデルの有効性を評価する。
論文 参考訳(メタデータ) (2020-08-30T15:38:44Z) - Joint Detection and Tracking in Videos with Identification Features [36.55599286568541]
本稿では,ビデオ検出,追跡,再識別機能の最初の共同最適化を提案する。
提案手法はMOTの最先端に到達し,オンライントラッカーにおけるUA-DETRAC'18追跡課題のうち,第1位,第3位にランクインした。
論文 参考訳(メタデータ) (2020-05-21T21:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。