Intelligent Video Recording Optimization using Activity Detection for Surveillance Systems
- URL: http://arxiv.org/abs/2411.02632v1
- Date: Mon, 04 Nov 2024 21:44:03 GMT
- Title: Intelligent Video Recording Optimization using Activity Detection for Surveillance Systems
- Authors: Youssef Elmir, Hayet Touati, Ouassila Melizou,
- Abstract summary: This paper proposes an optimized video recording solution focused on activity detection.
The proposed approach utilizes a hybrid method that combines motion detection via frame subtraction with object detection using YOLOv9.
The developed model demonstrates superior performance, achieving precision metrics of 0.855 for car detection and 0.884 for person detection.
- Score: 0.0
- License:
- Abstract: Surveillance systems often struggle with managing vast amounts of footage, much of which is irrelevant, leading to inefficient storage and challenges in event retrieval. This paper addresses these issues by proposing an optimized video recording solution focused on activity detection. The proposed approach utilizes a hybrid method that combines motion detection via frame subtraction with object detection using YOLOv9. This strategy specifically targets the recording of scenes involving human or car activity, thereby reducing unnecessary footage and optimizing storage usage. The developed model demonstrates superior performance, achieving precision metrics of 0.855 for car detection and 0.884 for person detection, and reducing the storage requirements by two-thirds compared to traditional surveillance systems that rely solely on motion detection. This significant reduction in storage highlights the effectiveness of the proposed approach in enhancing surveillance system efficiency. Nonetheless, some limitations persist, particularly the occurrence of false positives and false negatives in adverse weather conditions, such as strong winds.
Related papers
- Practical Video Object Detection via Feature Selection and Aggregation [18.15061460125668]
Video object detection (VOD) needs to concern the high across-frame variation in object appearance, and the diverse deterioration in some frames.
Most of contemporary aggregation methods are tailored for two-stage detectors, suffering from high computational costs.
This study invents a very simple yet potent strategy of feature selection and aggregation, gaining significant accuracy at marginal computational expense.
arXiv Detail & Related papers (2024-07-29T02:12:11Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
We propose a recoverable tracking framework, RTracker, that uses a tree-structured memory to dynamically associate a tracker and a detector to enable self-recovery.
Specifically, we propose a Positive-Negative Tree-structured memory to chronologically store and maintain positive and negative target samples.
Our core idea is to use the support samples of positive and negative target categories to establish a relative distance-based criterion for a reliable assessment of target loss.
arXiv Detail & Related papers (2024-03-28T08:54:40Z) - Traffic Video Object Detection using Motion Prior [16.63738085066699]
We propose two innovative methods to exploit the motion prior and boost the performance of traffic video object detection.
Firstly, we introduce a new self-attention module that leverages the motion prior to guide temporal information integration.
Secondly, we utilise a pseudo-labelling mechanism to eliminate noisy pseudo labels for the semi-supervised setting.
arXiv Detail & Related papers (2023-11-16T18:59:46Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
Driver distractions are known to be the dominant cause of road accidents.
State-of-the-art methods prioritize accuracy while ignoring latency.
We propose time-effective detection models by neglecting the temporal relation between video frames.
arXiv Detail & Related papers (2022-10-17T21:22:41Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
Untrimmed video understanding such as temporal action detection (TAD) often suffers from the pain of huge demand for computing resources.
We build a unified framework for efficient end-to-end temporal action detection (ETAD)
ETAD achieves state-of-the-art performance on both THUMOS-14 and ActivityNet-1.3.
arXiv Detail & Related papers (2022-05-14T21:16:21Z) - E^2TAD: An Energy-Efficient Tracking-based Action Detector [78.90585878925545]
This paper presents a tracking-based solution to accurately and efficiently localize predefined key actions.
It won first place in the UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC)
arXiv Detail & Related papers (2022-04-09T07:52:11Z) - Argus++: Robust Real-time Activity Detection for Unconstrained Video
Streams with Overlapping Cube Proposals [85.76513755331318]
Argus++ is a robust real-time activity detection system for analyzing unconstrained video streams.
The overall system is optimized for real-time processing on standalone consumer-level hardware.
arXiv Detail & Related papers (2022-01-14T03:35:22Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - Finding Action Tubes with a Sparse-to-Dense Framework [62.60742627484788]
We propose a framework that generates action tube proposals from video streams with a single forward pass in a sparse-to-dense manner.
We evaluate the efficacy of our model on the UCF101-24, JHMDB-21 and UCFSports benchmark datasets.
arXiv Detail & Related papers (2020-08-30T15:38:44Z) - Joint Detection and Tracking in Videos with Identification Features [36.55599286568541]
We propose the first joint optimization of detection, tracking and re-identification features for videos.
Our method reaches the state-of-the-art on MOT, it ranks 1st in the UA-DETRAC'18 tracking challenge among online trackers, and 3rd overall.
arXiv Detail & Related papers (2020-05-21T21:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.