Deep Learning and Hybrid Approaches for Dynamic Scene Analysis, Object Detection and Motion Tracking
- URL: http://arxiv.org/abs/2412.05331v3
- Date: Mon, 17 Feb 2025 05:54:20 GMT
- Title: Deep Learning and Hybrid Approaches for Dynamic Scene Analysis, Object Detection and Motion Tracking
- Authors: Shahran Rahman Alve,
- Abstract summary: This project aims to develop a robust video surveillance system, which can segment videos into smaller clips based on the detection of activities.
It uses CCTV footage, for example, to record only major events-like the appearance of a person or a thief-so that storage is optimized and digital searches are easier.
- Score: 0.0
- License:
- Abstract: This project aims to develop a robust video surveillance system, which can segment videos into smaller clips based on the detection of activities. It uses CCTV footage, for example, to record only major events-like the appearance of a person or a thief-so that storage is optimized and digital searches are easier. It utilizes the latest techniques in object detection and tracking, including Convolutional Neural Networks (CNNs) like YOLO, SSD, and Faster R-CNN, as well as Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs), to achieve high accuracy in detection and capture temporal dependencies. The approach incorporates adaptive background modeling through Gaussian Mixture Models (GMM) and optical flow methods like Lucas-Kanade to detect motions. Multi-scale and contextual analysis are used to improve detection across different object sizes and environments. A hybrid motion segmentation strategy combines statistical and deep learning models to manage complex movements, while optimizations for real-time processing ensure efficient computation. Tracking methods, such as Kalman Filters and Siamese networks, are employed to maintain smooth tracking even in cases of occlusion. Detection is improved on various-sized objects for multiple scenarios by multi-scale and contextual analysis. Results demonstrate high precision and recall in detecting and tracking objects, with significant improvements in processing times and accuracy due to real-time optimizations and illumination-invariant features. The impact of this research lies in its potential to transform video surveillance, reducing storage requirements and enhancing security through reliable and efficient object detection and tracking.
Related papers
- RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection [3.2805151494259563]
Real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models.
This paper introduces RE-POSE, a framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments.
arXiv Detail & Related papers (2025-01-16T10:56:45Z) - CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics [7.696109414724968]
Spiking neural networks (SNNs) are promising for event-based object recognition and detection.
Existing SNN frameworks often fail to handle multi-scaletemporal features, leading to increased data redundancy and reduced accuracy.
We propose CREST, a novel conjointly-trained spike-driven framework to exploit event-based object detection.
arXiv Detail & Related papers (2024-12-17T04:33:31Z) - Tracking Passengers and Baggage Items using Multiple Overhead Cameras at
Security Checkpoints [2.021502591596062]
We introduce a novel framework to track multiple objects in overhead camera videos for airport checkpoint security scenarios.
We propose a Self-Supervised Learning (SSL) technique to provide the model information about instance segmentation uncertainty from overhead images.
Our results show that self-supervision improves object detection accuracy by up to $42%$ without increasing the inference time of the model.
arXiv Detail & Related papers (2022-12-31T12:57:09Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Parallel Detection for Efficient Video Analytics at the Edge [5.547133811014004]
Deep Neural Network (DNN) trained object detectors are widely deployed in mission-critical systems for real time video analytics at the edge.
A common performance requirement in mission-critical edge services is the near real-time latency of online object detection on edge devices.
This paper addresses these problems by exploiting multi-model multi-device detection parallelism for fast object detection in edge systems.
arXiv Detail & Related papers (2021-07-27T02:50:46Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
We show how to use pre-trained convolutional neural net models to perform feature extraction and context mining.
We derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method.
arXiv Detail & Related papers (2020-10-06T00:26:14Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
We introduce "tracking-by-detection" into Video Object (VOS)
We propose a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance.
We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
arXiv Detail & Related papers (2020-07-11T05:44:16Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.