Real-Time Driver Monitoring Systems through Modality and View Analysis
- URL: http://arxiv.org/abs/2210.09441v1
- Date: Mon, 17 Oct 2022 21:22:41 GMT
- Title: Real-Time Driver Monitoring Systems through Modality and View Analysis
- Authors: Yiming Ma, Victor Sanchez, Soodeh Nikan, Devesh Upadhyay, Bhushan
Atote, Tanaya Guha
- Abstract summary: Driver distractions are known to be the dominant cause of road accidents.
State-of-the-art methods prioritize accuracy while ignoring latency.
We propose time-effective detection models by neglecting the temporal relation between video frames.
- Score: 28.18784311981388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driver distractions are known to be the dominant cause of road accidents.
While monitoring systems can detect non-driving-related activities and
facilitate reducing the risks, they must be accurate and efficient to be
applicable. Unfortunately, state-of-the-art methods prioritize accuracy while
ignoring latency because they leverage cross-view and multimodal videos in
which consecutive frames are highly similar. Thus, in this paper, we pursue
time-effective detection models by neglecting the temporal relation between
video frames and investigate the importance of each sensing modality in
detecting drives' activities. Experiments demonstrate that 1) our proposed
algorithms are real-time and can achieve similar performances (97.5\% AUC-PR)
with significantly reduced computation compared with video-based models; 2) the
top view with the infrared channel is more informative than any other single
modality. Furthermore, we enhance the DAD dataset by manually annotating its
test set to enable multiclassification. We also thoroughly analyze the
influence of visual sensor types and their placements on the prediction of each
class. The code and the new labels will be released.
Related papers
- Patch Spatio-Temporal Relation Prediction for Video Anomaly Detection [19.643936110623653]
Video Anomaly Detection (VAD) aims to identify abnormalities within a specific context and timeframe.
Recent deep learning-based VAD models have shown promising results by generating high-resolution frames.
We propose a self-supervised learning approach for VAD through an inter-patch relationship prediction task.
arXiv Detail & Related papers (2024-03-28T03:07:16Z) - Text-Driven Traffic Anomaly Detection with Temporal High-Frequency Modeling in Driving Videos [22.16190711818432]
We introduce TTHF, a novel single-stage method aligning video clips with text prompts, offering a new perspective on traffic anomaly detection.
Unlike previous approaches, the supervised signal of our method is derived from languages rather than one-hot vectors, providing a more comprehensive representation.
It is shown that our proposed TTHF achieves promising performance, outperforming state-of-the-art competitors by +5.4% AUC on the DoTA dataset.
arXiv Detail & Related papers (2024-01-07T15:47:19Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - Monocular Vision-based Prediction of Cut-in Maneuvers with LSTM Networks [0.0]
This study proposes a method to predict potentially dangerous cut-in maneuvers happening in the ego lane.
We follow a computer vision-based approach that only employs a single in-vehicle RGB camera.
Our algorithm consists of a CNN-based vehicle detection and tracking step and an LSTM-based maneuver classification step.
arXiv Detail & Related papers (2022-03-21T02:30:36Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - ASCNet: Self-supervised Video Representation Learning with
Appearance-Speed Consistency [62.38914747727636]
We study self-supervised video representation learning, which is a challenging task due to 1) a lack of labels for explicit supervision and 2) unstructured and noisy visual information.
Existing methods mainly use contrastive loss with video clips as the instances and learn visual representation by discriminating instances from each other.
In this paper, we observe that the consistency between positive samples is the key to learn robust video representations.
arXiv Detail & Related papers (2021-06-04T08:44:50Z) - An Efficient Approach for Anomaly Detection in Traffic Videos [30.83924581439373]
We propose an efficient approach for a video anomaly detection system which is capable of running at the edge devices.
The proposed approach comprises a pre-processing module that detects changes in the scene and removes the corrupted frames.
We also propose a sequential change detection algorithm that can quickly adapt to a new scene and detect changes in the similarity statistic.
arXiv Detail & Related papers (2021-04-20T04:43:18Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.