FUSECAPS: Investigating Feature Fusion Based Framework for Capsule Endoscopy Image Classification
- URL: http://arxiv.org/abs/2411.02637v1
- Date: Mon, 04 Nov 2024 21:55:52 GMT
- Title: FUSECAPS: Investigating Feature Fusion Based Framework for Capsule Endoscopy Image Classification
- Authors: Bidisha Chakraborty, Shree Mitra,
- Abstract summary: This work offers a strong methodology for classifying endoscopic images.
We suggest a hybrid feature extraction method that combines convolutional neural networks (CNNs), multi-layer perceptrons (MLPs), and radiomics.
We have achieved a validation accuracy of 76.2% in the capsule endoscopy video frame classification task.
- Score: 0.0
- License:
- Abstract: In order to improve model accuracy, generalization, and class imbalance issues, this work offers a strong methodology for classifying endoscopic images. We suggest a hybrid feature extraction method that combines convolutional neural networks (CNNs), multi-layer perceptrons (MLPs), and radiomics. Rich, multi-scale feature extraction is made possible by this combination, which captures both deep and handmade representations. These features are then used by a classification head to classify diseases, producing a model with higher generalization and accuracy. In this framework we have achieved a validation accuracy of 76.2% in the capsule endoscopy video frame classification task.
Related papers
- Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
This study introduces a novel and accurate approach to breast cancer classification using histopathology images.
It systematically compares leading Convolutional Neural Network (CNN) models across varying image datasets.
Our findings establish the settings required to achieve exceptional classification accuracy for standalone CNN models.
arXiv Detail & Related papers (2024-10-04T11:31:43Z) - MultiFusionNet: Multilayer Multimodal Fusion of Deep Neural Networks for
Chest X-Ray Image Classification [16.479941416339265]
Automated systems utilizing convolutional neural networks (CNNs) have shown promise in improving the accuracy and efficiency of chest X-ray image classification.
We propose a novel deep learning-based multilayer multimodal fusion model that emphasizes extracting features from different layers and fusing them.
The proposed model achieves a significantly higher accuracy of 97.21% and 99.60% for both three-class and two-class classifications, respectively.
arXiv Detail & Related papers (2024-01-01T11:50:01Z) - Gene-induced Multimodal Pre-training for Image-omic Classification [20.465959546613554]
This paper proposes a Gene-induced Multimodal Pre-training framework, which jointly incorporates genomics and Whole Slide Images (WSIs) for classification tasks.
Experimental results on the TCGA dataset show the superiority of our network architectures and our pre-training framework, achieving 99.47% in accuracy for image-omic classification.
arXiv Detail & Related papers (2023-09-06T04:30:15Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Deep Learning for Breast Cancer Classification: Enhanced Tangent
Function [27.761266391596262]
Recently, deep learning using convolutional neural network has been used successfully to classify the images of breast cells accurately.
This research aims to increase the accuracy of the classification of breast cancer by utilizing a Patch-based Adaptive Deepal Neural Network (DCNN)
The proposed solution focused on increasing the accuracy classifying cancer by enhancing the image contrast and reducing the vanishing gradient.
arXiv Detail & Related papers (2021-07-01T08:36:27Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMEN is formulated in a multi-branch fashion with pixel-wised attention model and classification submodular.
To focus more on subtle detail information, the sample image is enhanced by the pixel-wised attention map generated from former branch.
Experiments conducted on three benchmark datasets demonstrate the superiority of the proposed method under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:44:21Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.