Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology
- URL: http://arxiv.org/abs/2204.08311v1
- Date: Mon, 18 Apr 2022 13:31:53 GMT
- Title: Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology
- Authors: Yuchao Zheng, Chen Li, Xiaomin Zhou, Haoyuan Chen, Hao Xu, Yixin Li,
Haiqing Zhang, Xiaoyan Li, Hongzan Sun, Xinyu Huang, Marcin Grzegorzek
- Abstract summary: In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
- Score: 9.037868656840736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Breast cancer has the highest prevalence in women globally. The
classification and diagnosis of breast cancer and its histopathological images
have always been a hot spot of clinical concern. In Computer-Aided Diagnosis
(CAD), traditional classification models mostly use a single network to extract
features, which has significant limitations. On the other hand, many networks
are trained and optimized on patient-level datasets, ignoring the application
of lower-level data labels.
Method: This paper proposes a deep ensemble model based on image-level labels
for the binary classification of benign and malignant lesions of breast
histopathological images. First, the BreakHis dataset is randomly divided into
a training, validation and test set. Then, data augmentation techniques are
used to balance the number of benign and malignant samples. Thirdly,
considering the performance of transfer learning and the complementarity
between each network, VGG-16, Xception, Resnet-50, DenseNet-201 are selected as
the base classifiers.
Result: In the ensemble network model with accuracy as the weight, the
image-level binary classification achieves an accuracy of $98.90\%$. In order
to verify the capabilities of our method, the latest Transformer and Multilayer
Perception (MLP) models have been experimentally compared on the same dataset.
Our model wins with a $5\%-20\%$ advantage, emphasizing the ensemble model's
far-reaching significance in classification tasks.
Conclusion: This research focuses on improving the model's classification
performance with an ensemble algorithm. Transfer learning plays an essential
role in small datasets, improving training speed and accuracy. Our model has
outperformed many existing approaches in accuracy, providing a method for the
field of auxiliary medical diagnosis.
Related papers
- Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
This study introduces a novel and accurate approach to breast cancer classification using histopathology images.
It systematically compares leading Convolutional Neural Network (CNN) models across varying image datasets.
Our findings establish the settings required to achieve exceptional classification accuracy for standalone CNN models.
arXiv Detail & Related papers (2024-10-04T11:31:43Z) - Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.
In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.
Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Forward-Forward Contrastive Learning [4.465144120325802]
We propose Forward Forward Contrastive Learning (FFCL) as a novel pretraining approach for medical image classification.
FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task.
arXiv Detail & Related papers (2023-05-04T15:29:06Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
We propose a fully automated computer-aided diagnosis tool for classifying single-cell and slide images of cervical cancer.
We use the Sugeno Fuzzy Integral to ensemble the decision scores from three popular deep learning models, namely, Inception v3, DenseNet-161 and ResNet-34.
arXiv Detail & Related papers (2021-08-21T08:41:41Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.