MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
- URL: http://arxiv.org/abs/2501.08562v1
- Date: Wed, 15 Jan 2025 04:07:06 GMT
- Title: MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
- Authors: Oscar Ramos-Soto, Jorge Ramos-Frutos, Ezequiel Perez-Zarate, Diego Oliva, Sandra E. Balderas-Mata,
- Abstract summary: Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token.
The MIAFEx output features quality is compared against classical feature extractors using traditional and hybrid classifiers.
- Score: 5.44645642651339
- License:
- Abstract: Feature extraction techniques are crucial in medical image classification; however, classical feature extractors in addition to traditional machine learning classifiers often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output features quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating its superiority in accuracy and robustness across multiple complex classification medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx
Related papers
- FUSECAPS: Investigating Feature Fusion Based Framework for Capsule Endoscopy Image Classification [0.0]
This work offers a strong methodology for classifying endoscopic images.
We suggest a hybrid feature extraction method that combines convolutional neural networks (CNNs), multi-layer perceptrons (MLPs), and radiomics.
We have achieved a validation accuracy of 76.2% in the capsule endoscopy video frame classification task.
arXiv Detail & Related papers (2024-11-04T21:55:52Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Plug-and-Play Feature Generation for Few-Shot Medical Image
Classification [23.969183389866686]
Few-shot learning presents immense potential in enhancing model generalization and practicality for medical image classification with limited training data.
We propose MedMFG, a flexible and lightweight plug-and-play method designed to generate sufficient class-distinctive features from limited samples.
arXiv Detail & Related papers (2023-10-14T02:36:14Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - A Novel Vision Transformer with Residual in Self-attention for
Biomedical Image Classification [8.92307560991779]
This article presents the novel framework of multi-head self-attention for vision transformer (ViT)
The proposed method uses the concept of residual connection for accumulating the best attention output in each block of multi-head attention.
The results show the significant improvement over traditional ViT and other convolution based state-of-the-art classification models.
arXiv Detail & Related papers (2023-06-02T15:06:14Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - Forward-Forward Contrastive Learning [4.465144120325802]
We propose Forward Forward Contrastive Learning (FFCL) as a novel pretraining approach for medical image classification.
FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task.
arXiv Detail & Related papers (2023-05-04T15:29:06Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.