論文の概要: From Twitter to Reasoner: Understand Mobility Travel Modes and Sentiment Using Large Language Models
- arxiv url: http://arxiv.org/abs/2411.02666v1
- Date: Mon, 04 Nov 2024 23:04:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:03.846212
- Title: From Twitter to Reasoner: Understand Mobility Travel Modes and Sentiment Using Large Language Models
- Title(参考訳): TwitterからReasonerへ:大規模言語モデルを用いた移動モードと知覚の理解
- Authors: Kangrui Ruan, Xinyang Wang, Xuan Di,
- Abstract要約: 本稿では,Large Language Models (LLMs) を用いた新たな手法を提案する。
ほとんどのソーシャルメディア投稿は肯定的な感情ではなく否定的な感情を呈している。
- 参考スコア(独自算出の注目度): 8.438695039581141
- License:
- Abstract: Social media has become an important platform for people to express their opinions towards transportation services and infrastructure, which holds the potential for researchers to gain a deeper understanding of individuals' travel choices, for transportation operators to improve service quality, and for policymakers to regulate mobility services. A significant challenge, however, lies in the unstructured nature of social media data. In other words, textual data like social media is not labeled, and large-scale manual annotations are cost-prohibitive. In this study, we introduce a novel methodological framework utilizing Large Language Models (LLMs) to infer the mentioned travel modes from social media posts, and reason people's attitudes toward the associated travel mode, without the need for manual annotation. We compare different LLMs along with various prompting engineering methods in light of human assessment and LLM verification. We find that most social media posts manifest negative rather than positive sentiments. We thus identify the contributing factors to these negative posts and, accordingly, propose recommendations to traffic operators and policymakers.
- Abstract(参考訳): ソーシャルメディアは、交通サービスやインフラに対する意見を表明する上で重要なプラットフォームとなり、研究者が個人の旅行選択をより深く理解し、交通事業者がサービス品質を向上し、政策立案者が移動サービスを規制する可能性を秘めている。
しかし、重要な課題は、ソーシャルメディアデータの構造化されていない性質にある。
言い換えれば、ソーシャルメディアのようなテキストデータはラベル付けされておらず、大規模な手動アノテーションはコストを抑える。
本研究では,大規模言語モデル(LLM)を用いてソーシャルメディア投稿から言及された旅行モードを推定し,手動のアノテーションを必要とせず,関連する旅行モードに対する人々の態度を判断する手法を提案する。
我々は,人的評価とLLM検証の観点から,異なるLLMと,様々なプロンプトエンジニアリング手法を比較した。
ほとんどのソーシャルメディア投稿は肯定的な感情ではなく否定的な感情を呈している。
そこで我々は、これらの否定的投稿に寄与する要因を特定し、交通事業者や政策立案者に推奨する。
関連論文リスト
- Foundations and Recent Trends in Multimodal Mobile Agents: A Survey [57.677161006710065]
モバイルエージェントは、複雑で動的なモバイル環境におけるタスクの自動化に不可欠である。
近年の進歩により、リアルタイム適応性とマルチモーダルインタラクションが向上している。
これらの進歩は、プロンプトベースの方法とトレーニングベースの方法の2つの主要なアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-04T11:50:58Z) - Transit Pulse: Utilizing Social Media as a Source for Customer Feedback and Information Extraction with Large Language Model [12.6020349733674]
本稿では,交通関連情報を抽出し,分析するための新しい手法を提案する。
提案手法では,Large Language Models (LLM) ,特にLlama 3を合理化解析に用いている。
以上の結果から,公共交通機関におけるソーシャルメディアデータ分析を変革するLLMの可能性が示された。
論文 参考訳(メタデータ) (2024-10-19T07:08:40Z) - Be More Real: Travel Diary Generation Using LLM Agents and Individual Profiles [21.72229002939936]
本研究では,現実の文脈に応じたリアルな軌跡を生成するためのエージェントベースフレームワーク(MobAgent)を提案する。
当フレームワークを0.2万回の旅行調査データで検証し,個人化された正確な旅行日記を作成する上での有効性を実証した。
本研究は、実世界の移動データを通して、人間の移動性に関する詳細かつ洗練された理解を提供するLLMの能力を強調した。
論文 参考訳(メタデータ) (2024-07-10T09:11:57Z) - Large Language Models for Mobility in Transportation Systems: A Survey on Forecasting Tasks [8.548422411704218]
機械学習とディープラーニングの方法は、その柔軟性と正確性に好まれる。
大規模言語モデル (LLMs) の出現に伴い、多くの研究者がこれらのモデルと過去の手法を組み合わせ、将来の交通情報や人間の旅行行動を直接予測するためにLLMを適用した。
論文 参考訳(メタデータ) (2024-05-03T02:54:43Z) - SoMeLVLM: A Large Vision Language Model for Social Media Processing [78.47310657638567]
ソーシャルメディア処理のための大規模ビジョン言語モデル(SoMeLVLM)を提案する。
SoMeLVLMは、知識と理解、応用、分析、評価、作成を含む5つの重要な機能を備えた認知フレームワークである。
実験により,複数のソーシャルメディアタスクにおいて,SoMeLVLMが最先端のパフォーマンスを達成できることが実証された。
論文 参考訳(メタデータ) (2024-02-20T14:02:45Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Improving Urban Mobility: using artificial intelligence and new
technologies to connect supply and demand [7.347028791196305]
インテリジェントトランスポートシステム(ITS)は,情報通信技術をどのように活用するかを交通問題に適用するかを検討することを目的としている。
このパノラマでは、人工知能が特に機械学習の進歩において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-03-18T14:37:33Z) - Spatial Data Mining of Public Transport Incidents reported in Social
Media [7.144384940254773]
輸送現象のソーシャルメディアコミュニケーションは通常GISアノテーションを欠いている。
ほとんどのソーシャルメディアプラットフォームはポストに非POIGPS座標をアタッチすることを許可していない。
調査により6種類の輸送情報型を推定する。
提案手法は市民科学を可能にし,それを用いて3年間のインフラ事故が乗客の移動に与える影響を分析した。
論文 参考訳(メタデータ) (2021-10-11T19:28:11Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - An Iterative Approach for Identifying Complaint Based Tweets in Social
Media Platforms [76.9570531352697]
本稿では,トランスポートドメインに関連する苦情に基づく投稿を識別する反復的手法を提案する。
研究目的のための新しいデータセットのリリースとともに、包括的評価を行う。
論文 参考訳(メタデータ) (2020-01-24T22:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。