論文の概要: AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical
Applications with Categorical Inputs
- arxiv url: http://arxiv.org/abs/2212.13989v1
- Date: Tue, 13 Dec 2022 18:12:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 14:25:52.608372
- Title: AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical
Applications with Categorical Inputs
- Title(参考訳): advcat: カテゴリー入力を用いたサイバーセキュリティクリティカルアプリケーションのためのドメイン非依存ロバスト性評価
- Authors: Helene Orsini, Hongyan Bao, Yujun Zhou, Xiangrui Xu, Yufei Han,
Longyang Yi, Wei Wang, Xin Gao, Xiangliang Zhang
- Abstract要約: 敵攻撃に対する堅牢性は、機械学習のデプロイメントにおける重要な信頼の1つだ。
本稿では,ML駆動型サイバーセキュリティクリティカルな幅広いアプリケーションを対象とした,最適かつ高効率な対向ロバスト性評価プロトコルを提案する。
本研究では,ドメインに依存しないロバスト性評価手法を用いて,偽ニュースの検出と侵入検知問題に関する実験を行った。
- 参考スコア(独自算出の注目度): 29.907921481157974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning-as-a-Service systems (MLaaS) have been largely developed for
cybersecurity-critical applications, such as detecting network intrusions and
fake news campaigns. Despite effectiveness, their robustness against
adversarial attacks is one of the key trust concerns for MLaaS deployment. We
are thus motivated to assess the adversarial robustness of the Machine Learning
models residing at the core of these security-critical applications with
categorical inputs. Previous research efforts on accessing model robustness
against manipulation of categorical inputs are specific to use cases and
heavily depend on domain knowledge, or require white-box access to the target
ML model. Such limitations prevent the robustness assessment from being as a
domain-agnostic service provided to various real-world applications. We propose
a provably optimal yet computationally highly efficient adversarial robustness
assessment protocol for a wide band of ML-driven cybersecurity-critical
applications. We demonstrate the use of the domain-agnostic robustness
assessment method with substantial experimental study on fake news detection
and intrusion detection problems.
- Abstract(参考訳): マシンラーニング・アズ・ア・サービスシステム(mlaas)は、ネットワーク侵入の検出や偽ニュースキャンペーンなど、サイバーセキュリティクリティカルなアプリケーションのために主に開発されてきた。
有効性にも拘わらず、敵攻撃に対する堅牢性は、MLaaSデプロイメントにおける重要な信頼上の懸念の1つだ。
そこで我々は、これらのセキュリティクリティカルなアプリケーションの中核に位置する機械学習モデルの敵意的な堅牢性をカテゴリ的な入力で評価する動機付けをする。
分類入力の操作に対するモデルロバスト性へのアクセスに関するこれまでの研究は、ユースケースに特化しており、ドメイン知識に大きく依存している。
このような制限は、さまざまな現実世界のアプリケーションに提供されるドメインに依存しないサービスとしてロバストネスアセスメントを妨げます。
本稿では,ML駆動型サイバーセキュリティクリティカルアプリケーションを対象とした,最適かつ高い計算効率の対向ロバスト性評価プロトコルを提案する。
本研究では,ドメインに依存しないロバスト性評価手法を用いて,偽ニュースの検出と侵入検知問題に関する実験を行った。
関連論文リスト
- Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines [0.0]
本研究では機械学習(ML)技術を活用した効果的なマルウェア検出戦略の必要性に対処する。
本研究の目的は、個々のマシンの特定の状況に基づいて、マルウェアの脆弱性を正確に予測する高度なMLモデルを開発することである。
論文 参考訳(メタデータ) (2025-01-05T10:04:58Z) - ChatNVD: Advancing Cybersecurity Vulnerability Assessment with Large Language Models [0.46873264197900916]
本稿では,Large Language Models (LLMs) のソフトウェア脆弱性評価への応用について検討する。
我々は,OpenAIによるGPT-4o mini,MetaによるLlama 3,GoogleによるGemini 1.5 Proの3つの著名なLCMを利用して,ChatNVDの3つの変種を開発した。
それらの有効性を評価するために,一般的なセキュリティ脆弱性質問を含む包括的アンケートを用いて,これらのモデルの比較分析を行った。
論文 参考訳(メタデータ) (2024-12-06T03:45:49Z) - Visually Analyze SHAP Plots to Diagnose Misclassifications in ML-based Intrusion Detection [0.3199881502576702]
侵入検知システム(IDS)は、警告を提供することで本質的に脅威を軽減することができる。
これらの脅威を検出するため、さまざまな機械学習(ML)モデルとディープラーニング(DL)モデルが提案されている。
本稿では、重なり合うSHAPプロットを用いた説明可能な人工知能(XAI)に基づく視覚分析手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T23:08:34Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Adversarial Robustness of Deep Neural Networks: A Survey from a Formal
Verification Perspective [7.821877331499578]
悪意ある操作を受けた入力を扱う場合、ニューラルネットワークの信頼性を懸念する敵対的堅牢性は、セキュリティと機械学習において最もホットなトピックの1つである。
我々は、ニューラルネットワークの対向的堅牢性検証における既存の文献を調査し、機械学習、セキュリティ、ソフトウェアエンジニアリングドメインにわたる39の多様な研究成果を収集する。
我々は、このトピックを包括的に理解するために、形式的検証の観点から分類を提供する。
論文 参考訳(メタデータ) (2022-06-24T11:53:12Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。