Visually Analyze SHAP Plots to Diagnose Misclassifications in ML-based Intrusion Detection
- URL: http://arxiv.org/abs/2411.02670v1
- Date: Mon, 04 Nov 2024 23:08:34 GMT
- Title: Visually Analyze SHAP Plots to Diagnose Misclassifications in ML-based Intrusion Detection
- Authors: Maraz Mia, Mir Mehedi A. Pritom, Tariqul Islam, Kamrul Hasan,
- Abstract summary: Intrusion detection system (IDS) can essentially mitigate threats by providing alerts.
In order to detect these threats various machine learning (ML) and deep learning (DL) models have been proposed.
In this paper, we propose an explainable artificial intelligence (XAI) based visual analysis approach using overlapping SHAP plots.
- Score: 0.3199881502576702
- License:
- Abstract: Intrusion detection has been a commonly adopted detective security measures to safeguard systems and networks from various threats. A robust intrusion detection system (IDS) can essentially mitigate threats by providing alerts. In networks based IDS, typically we deal with cyber threats like distributed denial of service (DDoS), spoofing, reconnaissance, brute-force, botnets, and so on. In order to detect these threats various machine learning (ML) and deep learning (DL) models have been proposed. However, one of the key challenges with these predictive approaches is the presence of false positive (FP) and false negative (FN) instances. This FPs and FNs within any black-box intrusion detection system (IDS) make the decision-making task of an analyst further complicated. In this paper, we propose an explainable artificial intelligence (XAI) based visual analysis approach using overlapping SHAP plots that presents the feature explanation to identify potential false positive and false negatives in IDS. Our approach can further provide guidance to security analysts for effective decision-making. We present case study with multiple publicly available network traffic datasets to showcase the efficacy of our approach for identifying false positive and false negative instances. Our use-case scenarios provide clear guidance for analysts on how to use the visual analysis approach for reliable course-of-actions against such threats.
Related papers
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Using machine learning (ML) and deep learning (DL) models in Intrusion Detection Systems has led to a trust deficit due to their non-transparent decision-making.
This paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data.
Our approach achieves high accuracy with 99.47% in threat detection and provides clear, actionable explanations of its analytical outcomes.
arXiv Detail & Related papers (2024-02-01T18:29:16Z) - AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical
Applications with Categorical Inputs [29.907921481157974]
robustness against adversarial attacks is one of the key trust concerns for Machine Learning deployment.
We propose a provably optimal yet highly efficient adversarial robustness assessment protocol for a wide band of ML-driven cybersecurity-critical applications.
We demonstrate the use of the domain-agnostic robustness assessment method with substantial experimental study on fake news detection and intrusion detection problems.
arXiv Detail & Related papers (2022-12-13T18:12:02Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
A network intrusion detection system (IDS) is a tool used for identifying unauthorized and malicious behavior by observing the network traffic.
We propose an end-to-end early intrusion detection system to prevent network attacks before they could cause any more damage to the system under attack.
arXiv Detail & Related papers (2022-01-27T16:35:37Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
This work proposes to defend ASV systems against adversarial attacks with a separate detection network.
A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples.
arXiv Detail & Related papers (2020-06-11T04:31:56Z) - A cognitive based Intrusion detection system [0.0]
Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
arXiv Detail & Related papers (2020-05-19T13:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.