Effects of position-dependent mass (PDM) on the bound-state solutions of a massive spin-0 particle subjected to the Yukawa potential
- URL: http://arxiv.org/abs/2411.02690v1
- Date: Tue, 05 Nov 2024 00:31:06 GMT
- Title: Effects of position-dependent mass (PDM) on the bound-state solutions of a massive spin-0 particle subjected to the Yukawa potential
- Authors: P. H. F. Oliveira, W. P. Lima,
- Abstract summary: We discuss the eigenfunctions and eigenenergies of the Klein-Gordon equation with a Yukawa-type potential.
We conclude that the PDM leads to the equivalence of the positive ($E+$) and negative ($E-$) solution states at low energies.
- Score: 0.0
- License:
- Abstract: With the advent of Albert Einstein's theory of special relativity, Klein and Gordon made the first attempt to elevate time to the status of a coordinate in the Schr\"odinger equation. In this study, we graphically discuss the eigenfunctions and eigenenergies of the Klein-Gordon equation with a Yukawa-type potential (YP), within a position-dependent mass (PDM) framework. We conclude that the PDM leads to the equivalence of the positive ($E^+$) and negative ($E^-$) solution states at low energies. We observe that in the energy spectrum as a function of $\eta$ (YP intensity factor), the PDM can induce gap closure at the critical point where $E^+$ and $E^-$ become imaginary. In the spectrum as a function of $\alpha$ (YP shielding factor), it can compel the energies to be zero at $\alpha=0$, instead of being equal to $(m_0c^2)$ as in the invariant mass case.
Related papers
- Dirac fermions with electric dipole moment and position-dependent mass in the presence of a magnetic field generated by magnetic monopoles [0.0]
We determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM)
In particular, we discuss in detail the characteristics of the spectrum as well as analyze the behavior of the spectrum.
arXiv Detail & Related papers (2024-05-25T16:49:01Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Spin-zero bound states on the 2D Klein-Gordon equation under uniform
magnetic field [0.0]
We present an interaction modeling for the relativistic spin-0 charged particles moving in a uniform magnetic field.
As a functional approach to the nuclear interaction, we consider particle bound states without antiparticle regime.
Putting the approximation to spin-zero motion with $V(r)$$neq$$0$ and $S(r)$$=$$0$, one can introduced solvable model in the 2D polar space.
arXiv Detail & Related papers (2022-08-09T13:28:23Z) - Deep anharmonicity to relativistic spin-0 particles in the spherical
regime [0.0]
We present an approximation of the relativistic spin-0 charges moving in the quantum states with minimum coupling of electromagnetic fields.
We find that the potential depth of the charged particle affects the relativistic energy levels where we have found about 200 MeV being for particles and nearly -10 MeV being for anti-particles.
arXiv Detail & Related papers (2022-08-07T11:02:52Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Mapping the charge-dyon system into the position-dependent effective
mass background via Pauli equation [77.34726150561087]
This work aims to reproduce a quantum system composed of a charged spin - $1/2$ fermion interacting with a dyon with an opposite electrical charge.
arXiv Detail & Related papers (2020-11-01T14:38:34Z) - Approximate Solutions to the Klein-Fock-Gordon Equation for the sum of
Coulomb and Ring-Shaped like potentials [0.0]
We consider the quantum mechanical problem of the motion of a spinless charged relativistic particle with mass$M$.
It is shown that the system under consideration has both a discrete at $left|Eright|Mc2 $ and a continuous at $left|Eright|>Mc2 $ energy spectra.
It is also shown that relativistic expressions for wave functions, energy spectra and group generators in the limit $ctoinfty $ go over into the corresponding expressions for the nonrelativistic problem.
arXiv Detail & Related papers (2020-04-27T08:49:10Z) - Energy of a free Brownian particle coupled to thermal vacuum [0.0]
Experimentalists have come to temperatures very close to absolute zero at which physics that was once ordinary becomes extraordinary.
We study the simplest open quantum system, namely, a free quantum Brownian particle coupled to thermal vacuum.
arXiv Detail & Related papers (2020-03-30T15:44:04Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.