Game Plot Design with an LLM-powered Assistant: An Empirical Study with Game Designers
- URL: http://arxiv.org/abs/2411.02714v1
- Date: Tue, 05 Nov 2024 01:26:35 GMT
- Title: Game Plot Design with an LLM-powered Assistant: An Empirical Study with Game Designers
- Authors: Seyed Hossein Alavi, Weijia Xu, Nebojsa Jojic, Daniel Kennett, Raymond T. Ng, Sudha Rao, Haiyan Zhang, Bill Dolan, Vered Shwartz,
- Abstract summary: We introduce GamePlot, an LLM-powered assistant that supports game designers in crafting immersive narratives for turn-based games.
Our user study with 14 game designers shows high levels of both satisfaction with the generated game plots and sense of ownership over the narratives.
- Score: 29.54980724240688
- License:
- Abstract: We introduce GamePlot, an LLM-powered assistant that supports game designers in crafting immersive narratives for turn-based games, and allows them to test these games through a collaborative game play and refine the plot throughout the process. Our user study with 14 game designers shows high levels of both satisfaction with the generated game plots and sense of ownership over the narratives, but also reconfirms that LLM are limited in their ability to generate complex and truly innovative content. We also show that diverse user populations have different expectations from AI assistants, and encourage researchers to study how tailoring assistants to diverse user groups could potentially lead to increased job satisfaction and greater creativity and innovation over time.
Related papers
- ChatPCG: Large Language Model-Driven Reward Design for Procedural Content Generation [3.333383360927007]
This paper proposes ChatPCG, a large language model (LLM)-driven reward design framework.
It leverages human-level insights, coupled with game expertise, to generate rewards tailored to specific game features automatically.
ChatPCG is integrated with deep reinforcement learning, demonstrating its potential for multiplayer game content generation tasks.
arXiv Detail & Related papers (2024-06-07T08:18:42Z) - A Survey on Large Language Model-Based Game Agents [9.892954815419452]
The development of game agents holds a critical role in advancing towards Artificial General Intelligence (AGI)
This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint.
arXiv Detail & Related papers (2024-04-02T15:34:18Z) - The Ink Splotch Effect: A Case Study on ChatGPT as a Co-Creative Game
Designer [2.778721019132512]
This paper studies how large language models (LLMs) can act as effective, high-level creative collaborators and muses'' for game design.
Our goal is to determine whether AI-assistance can improve, hinder, or provide an alternative quality to games when compared to the creative intents implemented by human designers.
arXiv Detail & Related papers (2024-03-04T20:14:38Z) - Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation [96.0573187419543]
Chain-of-Thought (CoT) guides large language models to reason step-by-step, and can motivate their logical reasoning ability.
We explore the Leap-of-Thought (LoT) abilities within large language models (LLMs)
LoT is a non-sequential, creative paradigm involving strong associations and knowledge leaps.
arXiv Detail & Related papers (2023-12-05T02:41:57Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
We describe an effort to add an experimental reinforcement learning system to an existing automated game testing solution based on scripted bots.
We show a use-case of leveraging reinforcement learning in game production and cover some of the largest time sinks anyone who wants to make the same journey for their game may encounter.
We propose a few research directions that we believe will be valuable and necessary for making machine learning, and especially reinforcement learning, an effective tool in game production.
arXiv Detail & Related papers (2023-07-19T18:19:23Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z) - Leveraging Cluster Analysis to Understand Educational Game Player
Experiences and Support Design [3.07869141026886]
The ability for an educational game designer to understand their audience's play styles is an essential tool for improving their game's design.
We present a simple, reusable process using best practices for data clustering, feasible for use within a small educational game studio.
arXiv Detail & Related papers (2022-10-18T14:51:15Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
The Curiosity-Conditioned Proximal Trajectories (CCPT) method combines curiosity and imitation learning to train agents to explore.
We show how CCPT can explore complex environments, discover gameplay issues and design oversights in the process, and recognize and highlight them directly to game designers.
arXiv Detail & Related papers (2022-02-21T09:08:33Z) - An Empirical Study on the Generalization Power of Neural Representations
Learned via Visual Guessing Games [79.23847247132345]
This work investigates how well an artificial agent can benefit from playing guessing games when later asked to perform on novel NLP downstream tasks such as Visual Question Answering (VQA)
We propose two ways to exploit playing guessing games: 1) a supervised learning scenario in which the agent learns to mimic successful guessing games and 2) a novel way for an agent to play by itself, called Self-play via Iterated Experience Learning (SPIEL)
arXiv Detail & Related papers (2021-01-31T10:30:48Z) - Designing a mobile game to generate player data -- lessons learned [2.695466667982714]
We developed a mobile game without the guidance of similar projects.
Research into game balancing and system simulation required an experimental case study.
In creating RPGLitewe learned a series of lessons about effective amateur game development for research purposes.
arXiv Detail & Related papers (2021-01-18T16:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.