論文の概要: Relating Quantum Tamper-Evident Encryption to Other Cryptographic Notions
- arxiv url: http://arxiv.org/abs/2411.02742v1
- Date: Tue, 05 Nov 2024 02:20:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:24.960997
- Title: Relating Quantum Tamper-Evident Encryption to Other Cryptographic Notions
- Title(参考訳): 量子タンパー・エビデント暗号の他の暗号表記への応用
- Authors: Sébastien Lord,
- Abstract要約: 量子タンパー・エビデント暗号スキーム(quantum tamper-evident encryption scheme)は、古典的なメッセージを量子暗号文にマッピングする非相互作用対称鍵暗号スキームである。
この量子暗号プリミティブは2003年にゴッテスマンによって初めて導入された。
我々は、情報理論的な設定で、他の暗号プリミティブと正式に関連付けることで、タンパーの明解な暗号化の理解を深める。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A quantum tamper-evident encryption scheme is a non-interactive symmetric-key encryption scheme mapping classical messages to quantum ciphertexts such that an honest recipient of a ciphertext can detect with high probability any meaningful eavesdropping. This quantum cryptographic primitive was first introduced by Gottesman in 2003. Beyond formally defining this security notion, Gottesman's work had three main contributions: showing that any quantum authentication scheme is also a tamper-evident scheme, noting that a quantum key distribution scheme can be constructed from any tamper-evident scheme, and constructing a prepare-and-measure tamper-evident scheme using only Wiesner states inspired by Shor and Preskill's proof of security for the BB84 quantum key distribution scheme. In this work, we further our understanding of tamper-evident encryption by formally relating it to other cryptographic primitives in an information-theoretic setting. In particular, we show that tamper evidence implies encryption, answering a question left open by Gottesman, we show that it can be constructed from any encryption scheme with revocation and vice-versa, and we formalize an existing sketch of a construction of quantum money from any tamper-evident encryption scheme. These results also yield as a corollary that any scheme allowing the revocation of a message must be an encryption scheme. Finally, we show separations between tamper evidence and other primitives, notably that tamper evidence does not imply authentication and does not imply uncloneable encryption.
- Abstract(参考訳): 量子タンパー・エビデント暗号スキーム(quantum tamper-evident encryption scheme)は、古典的なメッセージを量子暗号文にマッピングする非対話対称鍵暗号スキームである。
この量子暗号プリミティブは2003年にゴッテスマンによって初めて導入された。
このセキュリティの概念を正式に定義する以外に、ゴッテスマンの研究には3つの主要な貢献があった: 量子認証スキームは、あらゆる量子鍵分布スキームから量子鍵分布スキームを構築することができることを指摘し、ショアとプレスキルのBB84量子鍵分布スキームに対するセキュリティ証明にインスパイアされたウィズナー状態のみを用いた準備と測定のタンパー分布スキームを構築すること。
本研究では,他の暗号プリミティブと情報理論的に関連付けることで,タンパー・エビデント暗号の理解を深める。
特に, タンパー証拠が暗号化を示唆していることを示し, ゴッテスマンが残した質問に答えて, 取り消しや逆転を伴う暗号スキームから構築できることを示し, 既存のタンパー証拠暗号スキームから量子マネーの構成のスケッチを定式化する。
これらの結果は、メッセージの取り消しを許可するいかなるスキームも暗号化スキームでなければならないという結論にもなります。
最後に、改ざん証拠と他のプリミティブの分離を示す。特に、改ざん証拠は認証を暗示せず、暗号化を控えるものではない。
関連論文リスト
- Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
復号化可能な暗号化や復号化可能なプログラムなど,復号化可能なプリミティブの実現可能性を示す。
これは、マルチコピーセキュリティというより強い概念が、制限不能な暗号において到達範囲内にあることを示唆している。
論文 参考訳(メタデータ) (2024-10-17T02:37:40Z) - Exact Homomorphic Encryption [0.0]
本稿では,暗号前処理を必要とせずに,暗号化データの正確な計算を可能にするEHE(Exact Homomorphic Encryption)というフレームワークを提案する。
量子ゲートの2つの基本的な特性、可逆性と非可換性は、EHEの成功を確立する。
論文 参考訳(メタデータ) (2024-01-17T07:48:52Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Device-independent uncloneable encryption [0.0]
我々は、いくつかの復号化鍵が特定の暗号を復号化できる、無作為暗号の変種を導入する。
デバイスに依存しない暗号化が実現可能であることを示す。
本手法の簡単な変更により,単一復号器の暗号方式が得られることを示す。
論文 参考訳(メタデータ) (2022-10-03T16:17:01Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
完全同型暗号方式として, 完全同型暗号方式を初めて構築する。
我々の主要な技術要素は、量子証明器が古典的検証器に量子状態の形でのLearning with Errors分布からのサンプルが削除されたことを納得させる対話的プロトコルである。
論文 参考訳(メタデータ) (2022-03-03T10:07:32Z) - Quantum Encryption with Certified Deletion, Revisited: Public Key,
Attribute-Based, and Classical Communication [10.973034520723957]
ブロードベントとイスラム教は量子暗号プリミティブを提案した。
このプリミティブでは、量子暗号文を所持している受信機は、暗号化されたメッセージが削除された古典的な証明書を生成することができる。
削除証明書はプライベートに検証可能であるため、証明書の検証キーを秘密にしておく必要があるが、ブロードベントとイスラム教の定義では、公的な検証可能性も考慮できる。
論文 参考訳(メタデータ) (2021-05-12T01:41:46Z) - A practical quantum encryption protocol with varying encryption
configurations [0.0]
本稿では、量子アルゴリズムを用いて、量子状態に基づくテキスト暗号のブロックを生成する量子暗号化プロトコルを提案する。
量子暗号化プロトコルの主な特徴は、各ブロックの暗号化構成が以前のブロックによって決定されることである。
論文 参考訳(メタデータ) (2021-01-22T20:09:03Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
複数のユニキャスト量子ネットワーク上でセキュアな量子ネットワークコードを導出する正準法を提案する。
我々のコードは攻撃がないときに量子状態を正しく送信する。
また、攻撃があっても送信された量子状態の秘密性を保証する。
論文 参考訳(メタデータ) (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z) - Quantum-secure message authentication via blind-unforgeability [74.7729810207187]
我々は、ブラインド・アンフォージェビリティ(英語版)と呼ばれる量子敵に対する非フォージェビリティ(英語版)の自然な定義を提案する。
この概念は、予測値に「部分的に盲目」アクセスを使用できる敵が存在する場合、関数を予測可能と定義する。
標準構造と減量支援のためのブラインド・アンフォージェビリティの適合性を示す。
論文 参考訳(メタデータ) (2018-03-10T05:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。