Memory Augmented Cross-encoders for Controllable Personalized Search
- URL: http://arxiv.org/abs/2411.02790v1
- Date: Tue, 05 Nov 2024 03:55:25 GMT
- Title: Memory Augmented Cross-encoders for Controllable Personalized Search
- Authors: Sheshera Mysore, Garima Dhanania, Kishor Patil, Surya Kallumadi, Andrew McCallum, Hamed Zamani,
- Abstract summary: We introduce an approach for controllable personalized search.
Our model, CtrlCE presents a novel cross-encoder model augmented with an editable memory constructed from users historical items.
We show CtrlCE to result in effective personalization as well as fulfill various key goals for controllable personalized search.
- Score: 53.7152408217116
- License:
- Abstract: Personalized search represents a problem where retrieval models condition on historical user interaction data in order to improve retrieval results. However, personalization is commonly perceived as opaque and not amenable to control by users. Further, personalization necessarily limits the space of items that users are exposed to. Therefore, prior work notes a tension between personalization and users' ability for discovering novel items. While discovery of novel items in personalization setups may be resolved through search result diversification, these approaches do little to allow user control over personalization. Therefore, in this paper, we introduce an approach for controllable personalized search. Our model, CtrlCE presents a novel cross-encoder model augmented with an editable memory constructed from users historical items. Our proposed memory augmentation allows cross-encoder models to condition on large amounts of historical user data and supports interaction from users permitting control over personalization. Further, controllable personalization for search must account for queries which don't require personalization, and in turn user control. For this, we introduce a calibrated mixing model which determines when personalization is necessary. This allows system designers using CtrlCE to only obtain user input for control when necessary. In multiple datasets of personalized search, we show CtrlCE to result in effective personalization as well as fulfill various key goals for controllable personalized search.
Related papers
- Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
We propose a framework that leverages user-centric knowledge graphs to enrich personalization.
By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraph enhances contextual understanding and output quality.
We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable.
arXiv Detail & Related papers (2025-01-04T01:46:49Z) - Personalized and Sequential Text-to-Image Generation [24.787970969428976]
We create a novel dataset of sequential preferences, which we leverage, together with large-scale open-source (non-sequential) datasets.
We construct user-preference and user-choice models using an EM strategy and identify varying user preference types.
We then leverage a large multimodal language model (LMM) and a value-based RL approach to suggest a personalized and diverse slate of prompt expansions to the user.
arXiv Detail & Related papers (2024-12-10T01:47:40Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy.
Existing FedCF methods typically combine distributed Collaborative Filtering (CF) algorithms with privacy-preserving mechanisms, and then preserve personalized information into a user embedding vector.
This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously.
arXiv Detail & Related papers (2024-08-16T05:49:14Z) - PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization [9.594958534074074]
We introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization.
We explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
arXiv Detail & Related papers (2024-07-25T14:36:18Z) - HYDRA: Model Factorization Framework for Black-Box LLM Personalization [36.21602686505842]
Personalization has emerged as a critical research area in modern intelligent systems.
Despite the remarkable few-shot capabilities exhibited by black-box large language models (LLMs), the inherent opacity of their model parameters presents significant challenges in aligning the generated output with individual expectations.
We propose HYDRA, a model factorization framework that captures both user-specific behavior patterns from historical data and shared general knowledge among all users to deliver personalized generation.
arXiv Detail & Related papers (2024-06-05T03:08:46Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
Our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP)
We develop a generic and personalization generative framework, that can handle a wide range of personalized needs.
Our methodology enhances the capabilities of foundational language models for personalized tasks.
arXiv Detail & Related papers (2024-03-15T20:21:31Z) - Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement [79.2400720115588]
We introduce Persona-DB, a simple yet effective framework consisting of a hierarchical construction process to improve generalization across task contexts.
In the evaluation of response prediction, Persona-DB demonstrates superior context efficiency in maintaining accuracy with a significantly reduced retrieval size.
Our experiments also indicate a marked improvement of over 10% under cold-start scenarios, when users have extremely sparse data.
arXiv Detail & Related papers (2024-02-16T20:20:43Z) - Incremental user embedding modeling for personalized text classification [12.381095398791352]
Individual user profiles and interaction histories play a significant role in providing customized experiences in real-world applications.
We propose an incremental user embedding modeling approach, in which embeddings of user's recent interaction histories are dynamically integrated into the accumulated history vectors.
We demonstrate the effectiveness of this approach by applying it to a personalized multi-class classification task based on the Reddit dataset.
arXiv Detail & Related papers (2022-02-13T17:33:35Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
This work investigates the task of unsupervised model personalization, adapted to continually evolving, unlabeled local user images.
We provide a novel Dual User-Adaptation framework (DUA) to explore the problem.
This framework flexibly disentangles user-adaptation into model personalization on the server and local data regularization on the user device.
arXiv Detail & Related papers (2020-03-30T09:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.