PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization
- URL: http://arxiv.org/abs/2407.18078v1
- Date: Thu, 25 Jul 2024 14:36:18 GMT
- Title: PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization
- Authors: Christopher Clarke, Yuzhao Heng, Lingjia Tang, Jason Mars,
- Abstract summary: We introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization.
We explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
- Score: 9.594958534074074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent emergence of Large Language Models (LLMs) has heralded a new era of human-AI interaction. These sophisticated models, exemplified by Chat-GPT and its successors, have exhibited remarkable capabilities in language understanding. However, as these LLMs have undergone exponential growth, a crucial dimension that remains understudied is the personalization of these models. Large foundation models such as GPT-3 etc. focus on creating a universal model that serves a broad range of tasks and users. This approach emphasizes the model's generalization capabilities, treating users as a collective rather than as distinct individuals. While practical for many common applications, this one-size-fits-all approach often fails to address the rich tapestry of human diversity and individual needs. To explore this issue we introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization. \datasetname{} consists of a series of user-centered tasks containing diverse and individualized expressions where the preferences of users can potentially differ for the same input. Using PEFT-U, we explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
Related papers
- Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''
We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.
For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
We present a public benchmark, PersonalLLM, focusing on adapting LLMs to provide maximal benefits for a particular user.
We curate open-ended prompts paired with many high-quality answers over which users would be expected to display heterogeneous latent preferences.
Our dataset and generated personalities offer an innovative testbed for developing personalization algorithms.
arXiv Detail & Related papers (2024-09-30T13:55:42Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests.
This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences.
We propose a novel personalized LLM model, ours. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module.
arXiv Detail & Related papers (2024-09-18T11:54:45Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
Our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP)
We develop a generic and personalization generative framework, that can handle a wide range of personalized needs.
Our methodology enhances the capabilities of foundational language models for personalized tasks.
arXiv Detail & Related papers (2024-03-15T20:21:31Z) - Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning [36.88126051792774]
Personalization in large language models (LLMs) is increasingly important.
One PEFT Per User (OPPU) employs personalized parameter-efficient fine-tuning (PEFT) modules to store user-specific behavior patterns and preferences.
OPPU significantly outperforms existing prompt-based methods across seven diverse tasks in the LaMP benchmark.
arXiv Detail & Related papers (2024-02-06T21:03:52Z) - Personalized Soups: Personalized Large Language Model Alignment via
Post-hoc Parameter Merging [148.77027765872006]
We study Reinforcement Learning from Personalized Human Feedback (RLPHF) problem.
LLMs are aligned to multiple preferences by modeling alignment as a Multi-Objective Reinforcement Learning (MORL) problem.
We show that we can achieve personalized alignment by decomposing preferences into multiple dimensions.
arXiv Detail & Related papers (2023-10-17T20:22:13Z) - When Large Language Models Meet Personalization: Perspectives of
Challenges and Opportunities [60.5609416496429]
The capability of large language models has been dramatically improved.
Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted.
By leveraging large language models as general-purpose interface, personalization systems may compile user requests into plans.
arXiv Detail & Related papers (2023-07-31T02:48:56Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2022-09-30T08:02:18Z) - Personalized Federated Learning: A Meta-Learning Approach [28.281166755509886]
In Federated Learning, we aim to train models across multiple computing units (users)
In this paper, we study a personalized variant of the federated learning in which our goal is to find an initial shared model that current or new users can easily adapt to their local dataset by performing one or a few steps of gradient descent with respect to their own data.
arXiv Detail & Related papers (2020-02-19T01:08:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.