Lost in Context: The Influence of Context on Feature Attribution Methods for Object Recognition
- URL: http://arxiv.org/abs/2411.02833v1
- Date: Tue, 05 Nov 2024 06:13:01 GMT
- Title: Lost in Context: The Influence of Context on Feature Attribution Methods for Object Recognition
- Authors: Sayanta Adhikari, Rishav Kumar, Konda Reddy Mopuri, Rajalakshmi Pachamuthu,
- Abstract summary: This study investigates how context manipulation influences both model accuracy and feature attribution.
We employ a range of feature attribution techniques to decipher the reliance of deep neural networks on context in object recognition tasks.
- Score: 4.674826882670651
- License:
- Abstract: Contextual information plays a critical role in object recognition models within computer vision, where changes in context can significantly affect accuracy, underscoring models' dependence on contextual cues. This study investigates how context manipulation influences both model accuracy and feature attribution, providing insights into the reliance of object recognition models on contextual information as understood through the lens of feature attribution methods. We employ a range of feature attribution techniques to decipher the reliance of deep neural networks on context in object recognition tasks. Using the ImageNet-9 and our curated ImageNet-CS datasets, we conduct experiments to evaluate the impact of contextual variations, analyzed through feature attribution methods. Our findings reveal several key insights: (a) Correctly classified images predominantly emphasize object volume attribution over context volume attribution. (b) The dependence on context remains relatively stable across different context modifications, irrespective of classification accuracy. (c) Context change exerts a more pronounced effect on model performance than Context perturbations. (d) Surprisingly, context attribution in `no-information' scenarios is non-trivial. Our research moves beyond traditional methods by assessing the implications of broad-level modifications on object recognition, either in the object or its context.
Related papers
- Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange [50.45953583802282]
We introduce a novel self-supervised learning (SSL) strategy for point cloud scene understanding.
Our approach leverages both object patterns and contextual cues to produce robust features.
Our experiments demonstrate the superiority of our method over existing SSL techniques.
arXiv Detail & Related papers (2024-04-11T06:39:53Z) - ObjectCompose: Evaluating Resilience of Vision-Based Models on Object-to-Background Compositional Changes [64.57705752579207]
We evaluate the resilience of vision-based models against diverse object-to-background context variations.
We harness the generative capabilities of text-to-image, image-to-text, and image-to-segment models to automatically generate object-to-background changes.
arXiv Detail & Related papers (2024-03-07T17:48:48Z) - Feature Importance versus Feature Influence and What It Signifies for
Explainable AI [0.0]
Feature importance should not be confused with the feature influence used by most state-of-the-art post-hoc Explainable AI methods.
The Contextual Importance and Utility (CIU) method provides a unified definition of global and local feature importance.
arXiv Detail & Related papers (2023-08-07T13:46:18Z) - Relational Local Explanations [11.679389861042]
We develop a novel model-agnostic and permutation-based feature attribution algorithm based on relational analysis between input variables.
We are able to gain a broader insight into machine learning model decisions and data.
arXiv Detail & Related papers (2022-12-23T14:46:23Z) - Context-driven Visual Object Recognition based on Knowledge Graphs [0.8701566919381223]
We propose an approach that enhances deep learning methods by using external contextual knowledge encoded in a knowledge graph.
We conduct a series of experiments to investigate the impact of different contextual views on the learned object representations for the same image dataset.
arXiv Detail & Related papers (2022-10-20T13:09:00Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
We show how vision-language models are able to understand where objects reside within an image and group together visually related parts of the imagery.
We propose a minimal set of modifications that results in models that uniquely learn both semantic and spatial information.
arXiv Detail & Related papers (2022-10-18T17:01:35Z) - Context-LGM: Leveraging Object-Context Relation for Context-Aware Object
Recognition [48.5398871460388]
We propose a novel Contextual Latent Generative Model (Context-LGM), which considers the object-context relation and models it in a hierarchical manner.
To infer contextual features, we reformulate the objective function of Variational Auto-Encoder (VAE), where contextual features are learned as a posterior conditioned distribution on the object.
The effectiveness of our method is verified by state-of-the-art performance on two context-aware object recognition tasks.
arXiv Detail & Related papers (2021-10-08T11:31:58Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
We develop an end-to-end trainable framework to learn contrastive features on the image and object instance levels.
We conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets.
arXiv Detail & Related papers (2021-04-20T17:56:24Z) - Contextual Interference Reduction by Selective Fine-Tuning of Neural
Networks [1.0152838128195465]
We study the role of the context on interfering with a disentangled foreground target object representation.
We work on a framework that benefits from the bottom-up and top-down processing paradigms.
arXiv Detail & Related papers (2020-11-21T20:11:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.