論文の概要: Metaheuristics for the Template Design Problem: Encoding, Symmetry and Hybridisation
- arxiv url: http://arxiv.org/abs/2411.02842v1
- Date: Tue, 05 Nov 2024 06:29:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:55.409163
- Title: Metaheuristics for the Template Design Problem: Encoding, Symmetry and Hybridisation
- Title(参考訳): テンプレート設計問題のためのメタヒューリスティックス:エンコーディング、対称性、ハイブリダイゼーション
- Authors: David Rodríguez Rueda, Carlos Cotta, Antonio J. Fernández-Leiva,
- Abstract要約: テンプレート設計問題(TDP)は、多くの対称性を持つ難しい問題であり、それをより複雑にしている。
本稿では,テンプレート設計の適合性を評価することを目的として,多種多様なメタヒューリスティクスを探索し,解析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The template design problem (TDP) is a hard combinatorial problem with a high number of symmetries which makes solving it more complicated. A number of techniques have been proposed in the literature to optimise its resolution, ranging from complete methods to stochastic ones. However, although metaheuristics are considered efficient methods that can find enough-quality solutions at a reasonable computational cost, these techniques have not proven to be truly efficient enough to deal with this problem. This paper explores and analyses a wide range of metaheuristics to tackle the problem with the aim of assessing their suitability for finding template designs. We tackle the problem using a wide set of metaheuristics whose implementation is guided by a number of issues such as problem formulation, solution encoding, the symmetrical nature of the problem, and distinct forms of hybridisation. For the TDP, we also propose a slot-based alternative problem formulation (distinct to other slot-based proposals), which represents another option other than the classical variation-based formulation of the problem. An empirical analysis, assessing the performance of all the metaheuristics (i.e., basic, integrative and collaborative algorithms working on different search spaces and with/without symmetry breaking) shows that some of our proposals can be considered the state-of-the-art when they are applied to specific problem instances.
- Abstract(参考訳): テンプレート設計問題(TDP)は、多くの対称性を持つ複雑な組合せ問題である。
完全解法から確率解法まで、その解法を最適化するいくつかの手法が文献で提案されている。
しかし、メタヒューリスティックスは、妥当な計算コストで十分な品質の解を見つけることのできる効率的な方法と考えられているが、これらの手法はこの問題に対処するのに十分な効率性があることは証明されていない。
本稿では,テンプレート設計の適合性を評価することを目的として,多種多様なメタヒューリスティクスを探索し,解析する。
本稿では,問題定式化や解の符号化,問題の対称性,ハイブリッド化の異なる形態など,様々な問題によって実装が導かれる多種多様なメタヒューリスティックスを用いて,この問題に対処する。
また、TDPでは、スロットベースの代替問題定式化(他のスロットベースの提案とは異なる)も提案し、古典的な変分ベースの定式化以外の選択肢を示す。
メタヒューリスティックス(基本的・積分的・協調的アルゴリズム)の様々な探索空間で動作し、対称性の破れがない場合)の性能を評価する経験的分析は、我々の提案のいくつかが特定の問題インスタンスに適用された場合、最先端のものとみなすことができることを示している。
関連論文リスト
- Memetic collaborative approaches for finding balanced incomplete block designs [0.0]
平衡不完全ブロック設計(BIBD)問題は、多数の対称性を持つ難しい問題である。
本稿では,古典的二元数定式化の代替として機能する双対(整数)問題表現を提案する。
論文 参考訳(メタデータ) (2024-11-04T16:41:18Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Conjunctive Query Based Constraint Solving For Feature Model
Configuration [79.14348940034351]
本稿では、制約満足度問題を解決するために共役クエリーを適用する方法を示す。
このアプローチは、構成タスクを解決するために、広範囲のデータベース技術の応用を可能にする。
論文 参考訳(メタデータ) (2023-04-26T10:08:07Z) - Doubly Stochastic Matrix Models for Estimation of Distribution
Algorithms [2.28438857884398]
本稿では,自然置換問題のマッチングと割当てにDSM(Douubly Matrices)を用いる方法について検討する。
具体的には、分散アルゴリズムの推定の枠組みを採用し、DSMを置換問題に対する既存の提案と比較する。
二次代入問題の事例に関する予備実験は、この研究の行を検証し、DSMが非常に競争力のある結果が得られることを示した。
論文 参考訳(メタデータ) (2023-04-05T14:36:48Z) - A Model-Oriented Approach for Lifting Symmetries in Answer Set
Programming [0.0]
我々は,小問題インスタンスのSBCを解釈可能な一階制約の集合に引き上げる,新しいモデル指向アンサーセットプログラミングを導入する。
簡単な問題をターゲットにして,先進的な意思決定問題にも適用できるように拡張することを目指している。
論文 参考訳(メタデータ) (2022-08-05T10:50:03Z) - Efficient lifting of symmetry breaking constraints for complex
combinatorial problems [9.156939957189502]
この作業は、Answer Set Programmingのためのモデルベースのアプローチの学習フレームワークと実装を拡張します。
Inductive Logic Programming System ILASPに新たなコンフリクト解析アルゴリズムを組み込む。
論文 参考訳(メタデータ) (2022-05-14T20:42:13Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Isometric Multi-Shape Matching [50.86135294068138]
形状間の対応を見つけることは、コンピュータビジョンとグラフィックスの基本的な問題である。
アイソメトリーは形状対応問題においてしばしば研究されるが、マルチマッチング環境では明確には考慮されていない。
定式化を解くのに適した最適化アルゴリズムを提案し,コンバージェンスと複雑性解析を提供する。
論文 参考訳(メタデータ) (2020-12-04T15:58:34Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。