A Post-Training Enhanced Optimization Approach for Small Language Models
- URL: http://arxiv.org/abs/2411.02939v1
- Date: Tue, 05 Nov 2024 09:32:26 GMT
- Title: A Post-Training Enhanced Optimization Approach for Small Language Models
- Authors: Keke Zhai,
- Abstract summary: This paper proposes a continuous post-training alignment data construction method for small language models.
The core of this method is based on the data guidance of large models, optimizing the diversity and accuracy of alignment data.
- Score: 0.0
- License:
- Abstract: This paper delves into the continuous post-training optimization methods for small language models, and proposes a continuous post-training alignment data construction method for small language models. The core of this method is based on the data guidance of large models, optimizing the diversity and accuracy of alignment data. In addition, to verify the effectiveness of the methods in this paper, we used Qwen2-0.5B-Instruct model as the baseline model for small language models, using the alignment dataset constructed by our proposed method, we trained and compared several groups of experiments, including SFT (Supervised Fine Tuning) post-training experiment and KTO (Kahneman Tversky optimization) post-training experiment, as well as SFT-KTO two-stage post-training experiment and model weight fusion experiment. Finally, we evaluated and analyzed the performance of post-training models, and confirmed that the continuous post-training optimization method proposed by us can significantly improve the performance of small language models.
Related papers
- Maximizing V-information for Pre-training Superior Foundation Models [14.78688545049181]
Pre-training foundation models on large-scale datasets demonstrate exceptional performance.
Recent research questions whether an increase in pre-training data always leads to enhanced model performance.
We develop an optimal data-effective learning method to maximize V-information.
arXiv Detail & Related papers (2024-08-13T10:28:54Z) - AutoScale: Automatic Prediction of Compute-optimal Data Composition for Training LLMs [61.13296177652599]
This paper demonstrates that the optimal composition of training data from different domains is scale-dependent.
We introduce *AutoScale*, a novel, practical approach for optimizing data compositions at potentially large training data scales.
Our evaluation on GPT-2 Large and BERT pre-training demonstrates *AutoScale*'s effectiveness in improving training convergence and downstream performance.
arXiv Detail & Related papers (2024-07-29T17:06:30Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - TRAWL: Tensor Reduced and Approximated Weights for Large Language Models [11.064868044313855]
We introduce TRAWL (Tensor Reduced and Approximated Weights for Large Language Models), a technique that applies tensor decomposition across multiple weight matrices to effectively denoise LLMs by capturing global structural patterns.
Our experiments show that TRAWL improves model performance by up to 16% over baseline models on benchmark datasets, without requiring additional data, training, or fine-tuning.
arXiv Detail & Related papers (2024-06-25T04:01:32Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
We propose a methodology for finding sequences of machine learning models that are stable across retraining iterations.
We develop a mixed-integer optimization formulation that is guaranteed to recover optimal models.
Our method shows stronger stability than greedily trained models with a small, controllable sacrifice in predictive power.
arXiv Detail & Related papers (2024-03-28T22:45:38Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiE is an efficient library that facilitates collaborative training of large language models.
With its modular design and comprehensive functionality, CoLLiE offers a balanced blend of efficiency, ease of use, and customization.
arXiv Detail & Related papers (2023-12-01T08:02:16Z) - Mixture-of-Linguistic-Experts Adapters for Improving and Interpreting
Pre-trained Language Models [22.977852629450346]
We propose a method that combines two popular research areas by injecting linguistic structures into pre-trained language models.
In our approach, parallel adapter modules encoding different linguistic structures are combined using a novel Mixture-of-Linguistic-Experts architecture.
Our experiment results show that our approach can outperform state-of-the-art PEFT methods with a comparable number of parameters.
arXiv Detail & Related papers (2023-10-24T23:29:06Z) - Improving Generalization of Pre-trained Language Models via Stochastic
Weight Averaging [25.856435988848638]
Knowledge Distillation (KD) is a commonly used technique for improving the generalization of compact Pre-trained Language Models (PLMs)
We adapt Weight Averaging (SWA), a method encouraging convergence to a flatter minimum, to fine-tune PLMs.
We demonstrate that our adaptation improves the generalization without extra cost.
arXiv Detail & Related papers (2022-12-12T15:09:56Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
We present an efficient method of pretraining large-scale autoencoding language models using training signals generated by an auxiliary model.
We propose a recipe, namely "Model generated dEnoising TRaining Objective" (METRO)
The resultant models, METRO-LM, consisting of up to 5.4 billion parameters, achieve new state-of-the-art on the GLUE, SuperGLUE, and SQuAD benchmarks.
arXiv Detail & Related papers (2022-04-13T21:39:15Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.