AutoScale: Automatic Prediction of Compute-optimal Data Composition for Training LLMs
- URL: http://arxiv.org/abs/2407.20177v2
- Date: Sun, 13 Oct 2024 01:05:50 GMT
- Title: AutoScale: Automatic Prediction of Compute-optimal Data Composition for Training LLMs
- Authors: Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, Ruoxi Jia,
- Abstract summary: This paper demonstrates that the optimal composition of training data from different domains is scale-dependent.
We introduce *AutoScale*, a novel, practical approach for optimizing data compositions at potentially large training data scales.
Our evaluation on GPT-2 Large and BERT pre-training demonstrates *AutoScale*'s effectiveness in improving training convergence and downstream performance.
- Score: 61.13296177652599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of language model pre-training. This paper demonstrates that the optimal composition of training data from different domains is scale-dependent, challenging the existing practice of determining optimal mixtures through small-scale experiments and directly applying them at larger scales. We derive an analytical model for the dependence of optimal weights on data scale and introduce *AutoScale*, a novel, practical approach for optimizing data compositions at potentially large training data scales. *AutoScale* first uses a principled optimization framework to find optimal compositions at smaller, feasible scales, then predicts optimal compositions at larger scales using our derived model. Our evaluation on GPT-2 Large and BERT pre-training demonstrates *AutoScale*'s effectiveness in improving training convergence and downstream performance. Particularly, for GPT-2 Large on RedPajama, *AutoScale* decreases validation perplexity 28% faster than baselines, with up to 38% speed-up over unweighted training, achieving the best performance across downstream tasks. This work provides insights into the varying benefits of data sources across training scales for language models, contributing to the burgeoning research on scale-dependent data curation. Code is open-sourced.
Related papers
- Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - Optimizing importance weighting in the presence of sub-population shifts [0.0]
A distribution shift between the training and test data can severely harm performance of machine learning models.
We argue that existing weightings for determining the weights are suboptimal, as they neglect the increase of the variance of the estimated model due to the finite sample size of the training data.
We propose a bi-level optimization procedure in which the weights and model parameters are optimized simultaneously.
arXiv Detail & Related papers (2024-10-18T09:21:10Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Scaling Laws for Sparsely-Connected Foundation Models [70.41266138010657]
We explore the impact of parameter sparsity on the scaling behavior of Transformers trained on massive datasets.
We identify the first scaling law describing the relationship between weight sparsity, number of non-zero parameters, and amount of training data.
arXiv Detail & Related papers (2023-09-15T16:29:27Z) - D4: Improving LLM Pretraining via Document De-Duplication and
Diversification [38.84592304799403]
We show that careful data selection via pre-trained model embeddings can speed up training.
We also show that repeating data intelligently consistently outperforms baseline training.
arXiv Detail & Related papers (2023-08-23T17:58:14Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
We show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training.
We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs.
arXiv Detail & Related papers (2023-03-18T17:56:01Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
We propose a Dynamic Scale Training paradigm (abbreviated as DST) to mitigate scale variation challenge in object detection.
Experimental results demonstrate the efficacy of our proposed DST towards scale variation handling.
It does not introduce inference overhead and could serve as a free lunch for general detection configurations.
arXiv Detail & Related papers (2020-04-26T16:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.