論文の概要: [Vision Paper] PRObot: Enhancing Patient-Reported Outcome Measures for Diabetic Retinopathy using Chatbots and Generative AI
- arxiv url: http://arxiv.org/abs/2411.02973v1
- Date: Tue, 05 Nov 2024 10:18:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:34.255868
- Title: [Vision Paper] PRObot: Enhancing Patient-Reported Outcome Measures for Diabetic Retinopathy using Chatbots and Generative AI
- Title(参考訳): [視覚紙]プロボット:チャットボットと生成AIを用いた糖尿病網膜症に対する患者報告アウトカム対策の強化
- Authors: Maren Pielka, Tobias Schneider, Jan Terheyden, Rafet Sifa,
- Abstract要約: 糖尿病網膜症に対する患者報告結果尺度(PROM)の文脈における第1大言語モデル(LLM)の応用について概説する。
患者は、インタラクティブなアプリケーションを通じて、生活の質や治療の進捗に関するフィードバックを提供することができる。
この応用の目的は、医療システムと治療の順守を改善し、その結果、その後の視力障害のケースを減らすことである。
- 参考スコア(独自算出の注目度): 1.6874375111244329
- License:
- Abstract: We present an outline of the first large language model (LLM) based chatbot application in the context of patient-reported outcome measures (PROMs) for diabetic retinopathy. By utilizing the capabilities of current LLMs, we enable patients to provide feedback about their quality of life and treatment progress via an interactive application. The proposed framework offers significant advantages over the current approach, which encompasses only qualitative collection of survey data or a static survey with limited answer options. Using the PROBot LLM-PROM application, patients will be asked tailored questions about their individual challenges, and can give more detailed feedback on the progress of their treatment. Based on this input, we will use machine learning to infer conventional PROM scores, which can be used by clinicians to evaluate the treatment status. The goal of the application is to improve adherence to the healthcare system and treatments, and thus ultimately reduce cases of subsequent vision impairment. The approach needs to be further validated using a survey and a clinical study.
- Abstract(参考訳): 糖尿病網膜症に対する患者報告結果尺度(PROM)の文脈において,最初の大規模言語モデル(LLM)ベースのチャットボットアプリケーションの概要を述べる。
現在のLCMの能力を利用することで、患者はインタラクティブなアプリケーションを通じて、生活の質や治療の進捗についてフィードバックを得られる。
提案するフレームワークは,定性的な調査データの収集や,限定的な回答オプションを備えた静的サーベイを含む,現在のアプローチに対する大きなアドバンテージを提供する。
PROBot LLM-PROMアプリケーションを使用することで、患者は個別の課題について適切な質問をし、治療の進捗についてより詳細なフィードバックを与えることができる。
この入力に基づいて,従来のPROMスコアを推論するために機械学習を使用し,臨床医が治療状況を評価するために使用できる。
この応用の目的は、医療システムと治療の順守を改善し、その結果、その後の視力障害のケースを減らすことである。
アプローチは、調査と臨床研究によってさらに検証する必要がある。
関連論文リスト
- Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment [22.983780823136925]
本研究は、医療対話モデルを改善するために、AIフィードバック(RLAIF)技術を用いた強化学習(Reinforcement Learning)について検討する。
医療におけるRLAIF研究の主な課題は、自動評価手法の限界である。
標準化された患者診査に基づく新しい評価枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-05T10:29:19Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Deep Attention Q-Network for Personalized Treatment Recommendation [1.6631602844999724]
パーソナライズされた治療レコメンデーションのためのDeep Attention Q-Networkを提案する。
深い強化学習フレームワーク内のTransformerアーキテクチャは、過去のすべての患者の観察を効率的に取り入れている。
実世界の敗血症と急性低血圧コホートにおけるモデルの評価を行い、最先端モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-07-04T07:00:19Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - An Evaluation of Generative Pre-Training Model-based Therapy Chatbot for
Caregivers [5.2116528363639985]
OpenAI GPTモデルのような生成ベースのアプローチは、治療コンテキストにおけるよりダイナミックな会話を可能にする。
我々は, GPT-2モデルを用いてチャットボットを構築し, 認知症患者の家族介護者と問題解決療法を行うセラピストの間で306回の治療セッションの転写を微調整した。
その結果、微調整されたモデルでは、事前訓練されたモデルよりも単語以外の出力が生成されることがわかった。
論文 参考訳(メタデータ) (2021-07-28T01:01:08Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Health improvement framework for planning actionable treatment process
using surrogate Bayesian model [1.2468700211588881]
本研究は,データ駆動方式で治療プロセスを計画するための新しい枠組みを提案する。
このフレームワークの重要なポイントは、個人の健康改善のための「行動可能性」の評価である。
論文 参考訳(メタデータ) (2020-10-30T06:02:49Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
我々は、PD患者の症状と、神経科医が提供した処方薬を収集し、データセットを構築した。
そこで我々は、観察された症状と処方薬との関係を学習し、新しいコンピュータ支援処方薬モデルを構築した。
新来の患者に対しては、処方薬モデルにより、観察された症状に対して適切な処方薬を推奨できる(予測)。
論文 参考訳(メタデータ) (2020-07-31T14:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。