Transformer-Based Fault-Tolerant Control for Fixed-Wing UAVs Using Knowledge Distillation and In-Context Adaptation
- URL: http://arxiv.org/abs/2411.02975v1
- Date: Tue, 05 Nov 2024 10:24:45 GMT
- Title: Transformer-Based Fault-Tolerant Control for Fixed-Wing UAVs Using Knowledge Distillation and In-Context Adaptation
- Authors: Francisco Giral, Ignacio Gómez, Ricardo Vinuesa, Soledad Le-Clainche,
- Abstract summary: This study presents a transformer-based approach for fault-tolerant control in fixed-wing Unmanned Aerial Vehicles (UAVs)
Our method directly maps outer-loop reference values into control commands using the in-student learning and attention mechanisms of transformers.
Experimental results demonstrate that our transformer-based controller outperforms industry-standard FCS and state-of-the-art reinforcement learning (RL) methods.
- Score: 3.1498833540989413
- License:
- Abstract: This study presents a transformer-based approach for fault-tolerant control in fixed-wing Unmanned Aerial Vehicles (UAVs), designed to adapt in real time to dynamic changes caused by structural damage or actuator failures. Unlike traditional Flight Control Systems (FCSs) that rely on classical control theory and struggle under severe alterations in dynamics, our method directly maps outer-loop reference values -- altitude, heading, and airspeed -- into control commands using the in-context learning and attention mechanisms of transformers, thus bypassing inner-loop controllers and fault-detection layers. Employing a teacher-student knowledge distillation framework, the proposed approach trains a student agent with partial observations by transferring knowledge from a privileged expert agent with full observability, enabling robust performance across diverse failure scenarios. Experimental results demonstrate that our transformer-based controller outperforms industry-standard FCS and state-of-the-art reinforcement learning (RL) methods, maintaining high tracking accuracy and stability in nominal conditions and extreme failure cases, highlighting its potential for enhancing UAV operational safety and reliability.
Related papers
- Model-Free versus Model-Based Reinforcement Learning for Fixed-Wing UAV
Attitude Control Under Varying Wind Conditions [1.474723404975345]
This paper evaluates and compares the performance of model-free and model-based reinforcement learning for the attitude control of fixed-wing unmanned aerial vehicles using PID as a reference point.
Results show that the Temporal Difference Model Predictive Control agent outperforms both the PID controller and other model-free reinforcement learning methods in terms of tracking accuracy and robustness.
arXiv Detail & Related papers (2024-09-26T14:47:14Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT) is a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world.
DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields.
It can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline.
arXiv Detail & Related papers (2023-10-13T12:22:31Z) - A Reinforcement Learning Approach for Robust Supervisory Control of UAVs
Under Disturbances [1.8799681615947088]
We present an approach to supervisory reinforcement learning control for unmanned aerial vehicles (UAVs)
We formulate a supervisory control architecture that interleaves with extant embedded control and demonstrates robustness to environmental disturbances in the form of adverse wind conditions.
arXiv Detail & Related papers (2023-05-21T19:00:06Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
We propose an event-triggered learning algorithm that decides when to learn in the face of uncertainty in the LQR problem.
We demonstrate improved performance over a robust controller baseline in a numerical example.
arXiv Detail & Related papers (2022-07-28T17:36:37Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Interpretable Stochastic Model Predictive Control using Distributional
Reinforced Estimation for Quadrotor Tracking Systems [0.8411385346896411]
We present a novel trajectory tracker for autonomous quadrotor navigation in dynamic and complex environments.
The proposed framework integrates a distributional Reinforcement Learning estimator for unknown aerodynamic effects into a Model Predictive Controller.
We demonstrate our system to improve the cumulative tracking errors by at least 66% with unknown and diverse aerodynamic forces.
arXiv Detail & Related papers (2022-05-14T23:27:38Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - Adaptive control of a mechatronic system using constrained residual
reinforcement learning [0.0]
We propose a simple, practical and intuitive approach to improve the performance of a conventional controller in uncertain environments.
Our approach is motivated by the observation that conventional controllers in industrial motion control value robustness over adaptivity to deal with different operating conditions.
arXiv Detail & Related papers (2021-10-06T08:13:05Z) - Understanding the Difficulty of Training Transformers [120.99980924577787]
We show that unbalanced gradients are not the root cause of the instability of training.
We propose Admin to stabilize the early stage's training and unleash its full potential in the late stage.
arXiv Detail & Related papers (2020-04-17T13:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.