Quantum surface effects on quantum emitters coupled to surface plasmon polariton
- URL: http://arxiv.org/abs/2411.02990v1
- Date: Tue, 05 Nov 2024 10:53:00 GMT
- Title: Quantum surface effects on quantum emitters coupled to surface plasmon polariton
- Authors: Xin-Yue Liu, Chun-Jie Yang, Jun-Hong An,
- Abstract summary: Quantum surface effects (QSEs) of the metal contribute additional loss sources to the surface plasmon polariton (SPP)
Here, we investigate the non-Markovian dynamics of quantum emitters coupled to a common SPP in the presence of the QSEs.
We find that, as long as the QE-SPP bound states favored by the QSEs are formed, a dissipationless entanglement among the QEs is created.
- Score: 6.75542489046787
- License:
- Abstract: As an ideal platform to explore strong quantized light-matter interactions, surface plasmon polariton (SPP) has inspired many applications in quantum technologies. It was recently found that quantum surface effects (QSEs) of the metal, including nonlocal optical response, electron spill-out, and Landau damping, contribute additional loss sources to the SPP. Such a deteriorated loss of the SPP severely hinders its realization of long-distance quantum interconnect. Here, we investigate the non-Markovian dynamics of quantum emitters (QEs) coupled to a common SPP in the presence of the QSEs in a planar metal-dielectric nanostructure. A mechanism to overcome the dissipation of the QEs caused by the lossy SPP is discovered. We find that, as long as the QE-SPP bound states favored by the QSEs are formed, a dissipationless entanglement among the QEs is created. It leads to that the separated QEs are coherently correlated in a manner of the Rabi-like oscillation mediated by the SPP even experiencing the metal absorption. Our study on the QSEs refreshes our understanding of the light-matter interactions in the absorptive medium and paves the way for applying the SPP in quantum interconnect.
Related papers
- From angular coefficients to quantum observables: a phenomenological appraisal in di-boson systems [44.99833362998488]
Motivated by the growing interest in accessing the spin structure of multi-boson processes, we study polarisation and spin-correlation coefficients in di-boson systems.
We show that higher-order corrections of QCD and electroweak type, off-shell modelling, and realistic effects such as fiducial selections and neutrino reconstruction are unavoidable.
arXiv Detail & Related papers (2024-09-25T08:30:54Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Non-Markovian quantum interconnect formed by a surface plasmon polariton waveguide [5.763979335284593]
Quantum interconnect (QI) is essentially a light-matter interface and acts as a building block in quantum technologies.
A surface plasmon polariton (SPP) supported by a metallic waveguide provides an ideal interface to explore strong light-matter couplings.
We propose a scheme of non-Markovian QI formed by the SPP of a metallic nanowire.
arXiv Detail & Related papers (2023-05-02T02:21:28Z) - Quantum Eigenvector Continuation for Chemistry Applications [57.70351255180495]
We show that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states.
In all cases, we show that the PES can be captured using relatively few basis states.
arXiv Detail & Related papers (2023-04-28T19:22:58Z) - Quasiparticle dynamics in epitaxial Al-InAs planar Josephson junctions [1.1534748916340392]
Quasiparticle (QP) effects play a significant role in the coherence and fidelity of superconducting quantum circuits.
We study the trapping and clearing of QPs from the Andreev bound states of epitaxial Al-InAs Josephson junctions incorporated in a superconducting quantum interference device.
arXiv Detail & Related papers (2023-03-08T18:32:22Z) - Degenerate parametric down-conversion facilitated by exciton-plasmon
polariton states in nonlinear plasmonic cavity [0.0]
We study the effect of degenerate parametric down-conversion (DPDC) in an ensemble of two-level quantum emitters (QEs) coupled via near-field interactions to a single surface plasmon (SP) mode of a nonlinear plasmonic cavity.
Considering the strong coupling regime, we find a critical SP-QE coupling attributed to the phase transition between normal and lasing steady states.
Examining fluctuations above the system's steady states, we predict new elementary excitations, namely, the exciton-plasmon polaritons formed by the two-SP quanta and single-ex
arXiv Detail & Related papers (2022-08-08T06:07:54Z) - Strong coupling of quantum emitters and the exciton polariton in MoS$_2$
nanodisks [0.0]
exciton-polariton (EP) as a quantum bus is promising for the development of quantum interconnect devices at room temperature.
We propose a mechanism to overcome the destructive effect of a damping EP on its mediated correlation dynamics of quantum emitters.
arXiv Detail & Related papers (2022-04-28T09:56:32Z) - Quantum surface effects in strong coupling dynamics [0.0]
Plasmons in nanostructured metals are widely utilized to trigger strong light--matter interactions with quantum light sources.
We study the role of quantum and surface effects in the plasmonic resonator.
arXiv Detail & Related papers (2021-02-22T08:52:38Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.