Donor-Acceptor Pairs near Silicon Carbide surfaces
- URL: http://arxiv.org/abs/2504.10476v1
- Date: Mon, 14 Apr 2025 17:58:59 GMT
- Title: Donor-Acceptor Pairs near Silicon Carbide surfaces
- Authors: Anil Bilgin, Ian N. Hammock, Alexander A. High, Giulia Galli,
- Abstract summary: Donor-acceptor pairs (DAPs) in wide-bandgap semiconductors are promising platforms for the realization of quantum technologies.<n>We show how the presence of surfaces influence the stability and optical properties of Al-N DAPs in SiC.<n>We introduce the concept of surface-defect pairs (SDPs), where an electron-hole pair is generated between a near-surface defect and an occupied surface state.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Donor-acceptor pairs (DAPs) in wide-bandgap semiconductors are promising platforms for the realization of quantum technologies, due to their optically controllable, long-range dipolar interactions. Specifically, Al-N DAPs in bulk silicon carbide (SiC) have been predicted to enable coherent coupling over distances exceeding 10 nm. However, their practical implementations require an understanding of the properties of these pairs near surfaces and interfaces. Here, using first principles calculations we investigate how the presence of surfaces influence the stability and optical properties of Al-N DAPs in SiC, and we show that they retain favorable optical properties comparable to their bulk counterparts, despite a slight increase in electron-phonon coupling. Furthermore, we introduce the concept of surface-defect pairs (SDPs), where an electron-hole pair is generated between a near-surface defect and an occupied surface state located in the bandgap of the material. We show that vanadium-based SDPs near OH-terminated 4H-SiC surfaces exhibit dipoles naturally aligned perpendicular to the surface, greatly enhancing dipole-dipole coupling between SDPs. Our results also reveal significant polarization-dependent modulation in the stimulated emission and photoionization cross sections of V-based SDPs, which are tunable by two orders of magnitude via the polarization angle of the incident laser light. The near-surface defects investigated here provide novel possibilities for the development of hybrid quantum-classical interfaces, as they can be used to mediate information transfer between quantum nodes and integrated photonic circuits.
Related papers
- Generation of photon pairs through spontaneous four-wave mixing in thin nonlinear layers [67.410870290301]
Pairs of entangled photons are a key resource for photonic quantum technologies.<n>Despite the success in the demonstration of spontaneous parametric-down-conversion (SPDC), there are almost no works on spontaneous four-wave mixing (SFWM)<n>SFWM can be implemented in any nanostructures, including isotropic and centrosymmetric ones.
arXiv Detail & Related papers (2025-02-03T12:30:06Z) - Cavity-enhanced superconductivity via band engineering [0.0]
We consider a two-dimensional electron gas interacting with a quantized cavity mode.
We find that the coupling between the electrons and the photons in the cavity enhances the superconducting gap.
arXiv Detail & Related papers (2024-05-14T14:21:02Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Donor-Acceptor Pairs in Wide-Bandgap Semiconductors for Quantum
Technology Applications [38.9306189220547]
We investigate the electronic structure and interactions of donor-acceptor pairs (DAPs) formed by various point defects in diamond and silicon carbide (SiC)
We show that polarization differences between ground and excited states lead to unusually large electric dipole moments for several DAPs in diamond and SiC.
We predict radiative lifetimes and photoluminescence spectra for selected substitutional atoms and show that while B-N pairs in diamond are challenging to control due to their large electron-phonon coupling, DAPs in SiC, especially Al-N pairs, are suitable candidates to realize long-range optically controllable interactions
arXiv Detail & Related papers (2023-05-09T22:45:13Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Fine structure splitting analysis of cavity-enhanced telecom-wavelength
InAs quantum dots grown on a GaAs(111)A vicinal substrate [0.0]
Entangled light can be generated by solid state quantum emitters with naturally low fine structure splitting.
We present droplet epitaxy of telecom-wavelength InAs QDs within an optical cavity on a vicinal (2deg miscut) GaAs(111)A substrate.
arXiv Detail & Related papers (2022-02-23T11:28:52Z) - Tunable Plasmonic Ultrastrong Coupling: Emulating Dicke Physics at Room
Temperature [1.0283067658828193]
A system of N two-level atoms cooperatively interacting with a photonic field can be described as a single giant atom coupled to the field with interaction strength N0.5.
Here, we extend the coupling beyond the standard light-matter interaction paradigm, emulating Dicke cooperativity in a terahertz metasurface with N meta-atoms.
arXiv Detail & Related papers (2021-08-05T10:04:00Z) - Defect polaritons from first principles [0.0]
We investigate three defect types -- CHB, CB-CB, and CB-VN -- in monolayer hexagonal boron nitride (hBN)
For all defect systems, we show that the polaritonic splitting that shifts the absorption energy of the lower polariton is much higher than can be expected from a Jaynes-Cummings interaction.
We find that initially localized electronic transition densities can become delocalized across the entire material under strong light-matter coupling.
arXiv Detail & Related papers (2021-05-04T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.