Neural Networks and (Virtual) Extended Formulations
- URL: http://arxiv.org/abs/2411.03006v1
- Date: Tue, 05 Nov 2024 11:12:11 GMT
- Title: Neural Networks and (Virtual) Extended Formulations
- Authors: Christoph Hertrich, Georg Loho,
- Abstract summary: We make a step towards proving lower bounds on the size of neural networks by linking their representative capabilities to the notion of the extension complexity $mathrmxc(P)$.
We show that powerful results on the ordinary extension complexity can be converted into lower bounds for monotone neural networks.
- Score: 5.762677915745415
- License:
- Abstract: Neural networks with piecewise linear activation functions, such as rectified linear units (ReLU) or maxout, are among the most fundamental models in modern machine learning. We make a step towards proving lower bounds on the size of such neural networks by linking their representative capabilities to the notion of the extension complexity $\mathrm{xc}(P)$ of a polytope $P$, a well-studied quantity in combinatorial optimization and polyhedral geometry. To this end, we propose the notion of virtual extension complexity $\mathrm{vxc}(P)=\min\{\mathrm{xc}(Q)+\mathrm{xc}(R)\mid P+Q=R\}$. This generalizes $\mathrm{xc}(P)$ and describes the number of inequalities needed to represent the linear optimization problem over $P$ as a difference of two linear programs. We prove that $\mathrm{vxc}(P)$ is a lower bound on the size of a neural network that optimizes over $P$. While it remains open to derive strong lower bounds on virtual extension complexity, we show that powerful results on the ordinary extension complexity can be converted into lower bounds for monotone neural networks, that is, neural networks with only nonnegative weights. Furthermore, we show that one can efficiently optimize over a polytope $P$ using a small virtual extended formulation. We therefore believe that virtual extension complexity deserves to be studied independently from neural networks, just like the ordinary extension complexity. As a first step in this direction, we derive an example showing that extension complexity can go down under Minkowski sum.
Related papers
- Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations [40.77319247558742]
We study the computational complexity of learning a target function $f_*:mathbbRdtomathbbR$ with additive structure.
We prove that a large subset of $f_*$ can be efficiently learned by gradient training of a two-layer neural network.
arXiv Detail & Related papers (2024-06-17T17:59:17Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Neural Network Approximation of Continuous Functions in High Dimensions
with Applications to Inverse Problems [6.84380898679299]
Current theory predicts that networks should scale exponentially in the dimension of the problem.
We provide a general method for bounding the complexity required for a neural network to approximate a H"older (or uniformly) continuous function.
arXiv Detail & Related papers (2022-08-28T22:44:07Z) - Shallow neural network representation of polynomials [91.3755431537592]
We show that $d$-variables of degreeR$ can be represented on $[0,1]d$ as shallow neural networks of width $d+1+sum_r=2Rbinomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1d-1[binomr+d-1d-1d-1d-1
arXiv Detail & Related papers (2022-08-17T08:14:52Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation [5.35599092568615]
This paper studies the power of artificial neural networks with rectified linear units.
We show that two fundamental optimization problems can be solved with neural networks of size $mathcalO(m2n2)$.
arXiv Detail & Related papers (2021-02-12T17:23:34Z) - Size and Depth Separation in Approximating Natural Functions with Neural
Networks [52.73592689730044]
We show the benefits of size and depth for approximation of natural functions with ReLU networks.
We show a complexity-theoretic barrier to proving such results beyond size $O(d)$.
We also show an explicit natural function, that can be approximated with networks of size $O(d)$.
arXiv Detail & Related papers (2021-01-30T21:30:11Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - On the Modularity of Hypernetworks [103.1147622394852]
We show that for a structured target function, the overall number of trainable parameters in a hypernetwork is smaller by orders of magnitude than the number of trainable parameters of a standard neural network and an embedding method.
arXiv Detail & Related papers (2020-02-23T22:51:52Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
We develop a corrective mechanism for neural network approximation.
We show that two-layer neural networks in the random features regime (RF) can memorize arbitrary labels.
We also consider three-layer neural networks and show that the corrective mechanism yields faster representation rates for smooth radial functions.
arXiv Detail & Related papers (2020-02-01T20:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.