FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses
- URL: http://arxiv.org/abs/2411.03019v2
- Date: Sun, 05 Jan 2025 11:20:57 GMT
- Title: FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses
- Authors: Isaac Baglin, Xiatian Zhu, Simon Hadfield,
- Abstract summary: Federated Learning is a privacy preserving decentralized machine learning paradigm.
Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.
This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
- Score: 50.921333548391345
- License:
- Abstract: Federated Learning is a privacy preserving decentralized machine learning paradigm designed to collaboratively train models across multiple clients by exchanging gradients to the server and keeping private data local. Nevertheless, recent research has revealed that the security of Federated Learning is compromised, as private ground truth data can be recovered through a gradient inversion technique known as Deep Leakage. While these attacks are crafted with a focus on applications in Federated Learning, they generally are not evaluated in realistic scenarios. This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses within a realistic Federated context. By implementing a unified benchmark that encompasses multiple state-of-the-art Deep Leakage techniques and various defense strategies, our framework facilitates the evaluation and comparison of the efficacy of these methods across different datasets and training states. This work highlights a crucial trade-off between privacy and model accuracy in Federated Learning and aims to advance the understanding of security challenges in decentralized machine learning systems, stimulate future research, and enhance reproducibility in evaluating Deep Leakage attacks and defenses.
Related papers
- Membership Inference Attacks and Defenses in Federated Learning: A Survey [25.581491871183815]
Federated learning is a decentralized machine learning approach where clients train models locally and share model updates to develop a global model.
One of the key threats is membership inference attacks, which target clients' privacy by determining whether a specific example is part of the training set.
These attacks can compromise sensitive information in real-world applications, such as medical diagnoses within a healthcare system.
arXiv Detail & Related papers (2024-12-09T02:39:58Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning (FL) is an emerging machine learning approach enabling model training on decentralized devices or data sources.
We propose a robust FL approach based on the credibility management scheme, called Fed-Credit.
The results exhibit superior accuracy and resilience against adversarial attacks, all while maintaining comparatively low computational complexity.
arXiv Detail & Related papers (2024-05-20T03:35:13Z) - Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
This paper introduces a novel framework focused on the strategic elimination of adversarial users within a federated model.
We detect anomalies in the aggregation phase of the Federated Algorithm, by integrating metadata gathered by the local training instances with Differential Privacy techniques.
Our experiments demonstrate the efficacy of our methods, significantly mitigating the risk of data poisoning while maintaining user privacy and model performance.
arXiv Detail & Related papers (2024-04-19T10:36:00Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Where Did You Learn That From? Surprising Effectiveness of Membership
Inference Attacks Against Temporally Correlated Data in Deep Reinforcement
Learning [114.9857000195174]
A major challenge to widespread industrial adoption of deep reinforcement learning is the potential vulnerability to privacy breaches.
We propose an adversarial attack framework tailored for testing the vulnerability of deep reinforcement learning algorithms to membership inference attacks.
arXiv Detail & Related papers (2021-09-08T23:44:57Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning [14.134217287912008]
Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients.
Recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks.
We present a principled framework for evaluating and comparing different forms of client privacy leakage attacks.
arXiv Detail & Related papers (2020-04-22T05:15:03Z) - An Overview of Federated Deep Learning Privacy Attacks and Defensive
Strategies [1.370633147306388]
Collaborative machine learning (ML) algorithms are being developed to ensure the protection of private data used for processing.
Federated learning (FL) is the most popular of these methods.
Recent studies showed that such model updates may still very well leak private information.
arXiv Detail & Related papers (2020-04-01T12:41:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.