論文の概要: Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques
- arxiv url: http://arxiv.org/abs/2411.03131v1
- Date: Sun, 03 Nov 2024 18:01:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:56.512983
- Title: Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques
- Title(参考訳): CPRにおける機械学習のイノベーション: 強化された蘇生技術に関する包括的調査
- Authors: Saidul Islam, Gaith Rjoub, Hanae Elmekki, Jamal Bentahar, Witold Pedrycz, Robin Cohen,
- Abstract要約: 心肺蘇生(CPR)における機械学習(ML)と人工知能(AI)の変革的役割について検討する。
再現結果を改善する上で、予測モデリング、AI強化デバイス、リアルタイムデータ分析の影響を強調している。
本稿は、この新興分野における現在の応用、課題、今後の方向性に関する包括的概要、分類、および批判的分析を提供する。
- 参考スコア(独自算出の注目度): 52.71395121577439
- License:
- Abstract: This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR). It examines the evolution from traditional CPR methods to innovative ML-driven approaches, highlighting the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes. The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
- Abstract(参考訳): 本稿では,心肺蘇生(CPR)における機械学習(ML)と人工知能(AI)の変革的役割について検討する。
従来のCPR手法から革新的ML駆動アプローチへの進化を検証し、予測モデリング、AI強化デバイス、そして蘇生結果の改善におけるリアルタイムデータ分析の影響を強調した。
本稿は、この新興分野における現在の応用、課題、今後の方向性に関する包括的概要、分類、および批判的分析を提供する。
関連論文リスト
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - "Forgetting" in Machine Learning and Beyond: A Survey [0.0]
この調査は、さまざまな機械学習サブフィールドにまたがる、忘れることの利点とその応用に焦点を当てる。
本稿では,機械学習モデルへの忘れるメカニズムの統合に関する現状の課題,今後の方向性,倫理的考察について論じる。
論文 参考訳(メタデータ) (2024-05-31T05:10:30Z) - Automated Radiology Report Generation: A Review of Recent Advances [5.965255286239531]
人工知能の最近の技術進歩は、自動放射線学レポート生成に大きな可能性を示している。
人工知能の最近の進歩は、自動放射線診断レポート生成に大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-17T15:06:08Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
本研究は, ジェネレーティブ・クラス・インクリメンタル・ラーニング(GCIL, Generative Class Incremental Learning)への新たなアプローチを提案する。
我々は, 忘れる機構の統合により, 新たな知識獲得におけるモデルの性能が著しく向上することを発見した。
論文 参考訳(メタデータ) (2024-03-27T05:10:38Z) - Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning [5.982922468400901]
本稿では,パーキンソン病の研究において,新たな機械学習フレームワークを用いてPDを異なるサブタイプに分類し,その進展を予測することによって,画期的な進歩を示す。
この革新的なアプローチは、従来の方法論がしばしば見逃すPDマニフェストの微妙だが批判的なパターンを識別することを可能にする。
論文 参考訳(メタデータ) (2023-06-07T19:54:56Z) - A Survey on Automated Program Repair Techniques [19.8878105453369]
本稿では,検索ベース,制約ベース,テンプレートベース,学習ベースという4つの異なるAPRパッチ生成方式を紹介する。
本稿では,それぞれのAPRツールをレビュー・比較するための一貫した基準セットを提案し,その利点とデメリットを要約し,APR開発の現状について議論する。
論文 参考訳(メタデータ) (2023-03-31T16:28:37Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z) - Machine learning-based clinical prediction modeling -- A practical guide
for clinicians [0.0]
機械学習や人工知能に関連する原稿の数は、ここ数年で指数関数的に増えている。
第1節では、機械学習の一般的な原理について解説する。
さらに,再サンプリング,オーバーフィッティング,モデル一般化性の重要性とモデル評価戦略を概観する。
論文 参考訳(メタデータ) (2020-06-23T20:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。