Architectures for Heterogeneous Quantum Error Correction Codes
- URL: http://arxiv.org/abs/2411.03202v3
- Date: Sun, 10 Nov 2024 21:00:58 GMT
- Title: Architectures for Heterogeneous Quantum Error Correction Codes
- Authors: Samuel Stein, Shifan Xu, Andrew W. Cross, Theodore J. Yoder, Ali Javadi-Abhari, Chenxu Liu, Kun Liu, Zeyuan Zhou, Charles Guinn, Yufei Ding, Yongshan Ding, Ang Li,
- Abstract summary: Heterogeneous architectures provide a clear path to universal logical computation.
We propose integrating the surface code and gross code using an ancilla bus for inter-code data movement.
We demonstrate physical qubit reductions of up to 6.42x when executing an algorithm to a specific logical error rate.
- Score: 13.488578754808676
- License:
- Abstract: Quantum Error Correction (QEC) is essential for future quantum computers due to its ability to exponentially suppress physical errors. The surface code is a leading error-correcting code candidate because of its local topological structure, experimentally achievable thresholds, and support for universal gate operations with magic states. However, its physical overhead scales quadratically with number of correctable errors. Conversely, quantum low-density parity-check (qLDPC) codes offer superior scaling but lack, on their own, a clear path to universal logical computation. Therefore, it is becoming increasingly evident is becoming that there are significant advantages to designing architectures using multiple codes. Heterogeneous architectures provide a clear path to universal logical computation as well as the ability to access different resource trade offs. To address this, we propose integrating the surface code and gross code using an ancilla bus for inter-code data movement. This approach involves managing trade-offs, including qubit overhead, a constrained instruction set, and gross code (memory) routing and management. While our focus is on the gross-surface code architecture, our method is adaptable to any code combination and the constraints generated by that specific architecture. Motivated by the potential reduction of physical qubit overhead, an ever important feature in the realization of fault tolerant computation, we perform the first full system study of heterogeneous error-correcting codes, discovering architectural trade-offs and optimizing around them. We demonstrate physical qubit reductions of up to 6.42x when executing an algorithm to a specific logical error rate, at the cost of up to a 3.43x increase in execution time.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Fault-tolerant quantum computing with the parity code and noise-biased qubits [0.0]
We present a fault-tolerant universal quantum computing architecture based on a code concatenation of noise-biased qubits and the parity architecture.
The parity architecture can be understood as a LDPC code tailored specifically to obtain any desired logical connectivity from nearest neighbor physical interactions.
arXiv Detail & Related papers (2024-04-17T12:49:31Z) - Dependency-Aware Compilation for Surface Code Quantum Architectures [7.543907169342984]
We study the problem of compiling quantum circuits for quantum computers implementing surface codes.
We solve this problem efficiently and near-optimally with a novel algorithm.
Our evaluation shows that our approach is powerful and flexible for compiling realistic workloads.
arXiv Detail & Related papers (2023-11-29T19:36:19Z) - Matching Generalized-Bicycle Codes to Neutral Atoms for Low-Overhead
Fault-Tolerance [7.718509743812828]
We present a protocol for implementing a restricted set of space-efficient quantum error correcting codes in atom arrays.
This protocol enables generalized-bicycle codes that require up to 10x fewer physical qubits than surface codes.
We also evaluate a proof-of-concept quantum memory hier- archy where generalized-bicycle codes are used in conjunction with surface codes for general computation.
arXiv Detail & Related papers (2023-11-28T17:31:08Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - A Novel Implementation Methodology for Error Correction Codes on a
Neuromorphic Architecture [0.8021197489470758]
We propose a methodology to map the hard-decision class of decoder algorithms on a neuromorphic architecture.
We present the implementation of the Gallager B decoding algorithm on a TrueNorth-inspired architecture that is emulated on the Xilinx Zynq ZCU102 MPSoC.
arXiv Detail & Related papers (2023-06-06T20:49:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.