論文の概要: Beyond Grid Data: Exploring Graph Neural Networks for Earth Observation
- arxiv url: http://arxiv.org/abs/2411.03223v1
- Date: Tue, 05 Nov 2024 16:12:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:54.643416
- Title: Beyond Grid Data: Exploring Graph Neural Networks for Earth Observation
- Title(参考訳): グリッドデータを超えて - 地球観測のためのグラフニューラルネットワークの探索
- Authors: Shan Zhao, Zhaiyu Chen, Zhitong Xiong, Yilei Shi, Sudipan Saha, Xiao Xiang Zhu,
- Abstract要約: グラフニューラルネットワーク(GNN)は重要なイノベーションとして登場し、非ユークリッド領域にDLを推進している。
GNNは、多様なモダリティ、複数のセンサー、地球観測データの異種性によって引き起こされる課題に効果的に取り組むことができる。
本稿では、気象・気候分析、災害管理、大気質モニタリング、農業、土地被覆分類、水文プロセスモデリング、都市モデルなど、GNNの地球システムにおける科学的問題への応用の幅広い範囲について検討する。
- 参考スコア(独自算出の注目度): 26.397297480169858
- License:
- Abstract: Earth Observation (EO) data analysis has been significantly revolutionized by deep learning (DL), with applications typically limited to grid-like data structures. Graph Neural Networks (GNNs) emerge as an important innovation, propelling DL into the non-Euclidean domain. Naturally, GNNs can effectively tackle the challenges posed by diverse modalities, multiple sensors, and the heterogeneous nature of EO data. To introduce GNNs in the related domains, our review begins by offering fundamental knowledge on GNNs. Then, we summarize the generic problems in EO, to which GNNs can offer potential solutions. Following this, we explore a broad spectrum of GNNs' applications to scientific problems in Earth systems, covering areas such as weather and climate analysis, disaster management, air quality monitoring, agriculture, land cover classification, hydrological process modeling, and urban modeling. The rationale behind adopting GNNs in these fields is explained, alongside methodologies for organizing graphs and designing favorable architectures for various tasks. Furthermore, we highlight methodological challenges of implementing GNNs in these domains and possible solutions that could guide future research. While acknowledging that GNNs are not a universal solution, we conclude the paper by comparing them with other popular architectures like transformers and analyzing their potential synergies.
- Abstract(参考訳): 地球観測(EO)データ分析はディープラーニング(DL)によって大幅に革新され、一般的にはグリッドのようなデータ構造に制限される。
グラフニューラルネットワーク(GNN)は重要なイノベーションとして登場し、非ユークリッド領域にDLを推進している。
当然、GNNは多様なモダリティ、複数のセンサー、およびEOデータの異種性によって引き起こされる課題に効果的に取り組むことができる。
関連ドメインにGNNを導入するために、GNNに関する基本的な知識を提供することからレビューを開始する。
次に、GNNが潜在的な解決策を提供できるEOの一般的な問題を要約する。
続いて、気象・気候分析、災害管理、大気質モニタリング、農業、土地被覆分類、水文プロセスモデリング、都市モデルなど、地球システムにおけるGNNの科学的問題への幅広い応用について検討する。
これらの分野でのGNNの採用の背景にある理論的根拠は、グラフを整理し、様々なタスクに最適なアーキテクチャを設計するための方法論と共に説明されている。
さらに,これらの領域にGNNを実装する上での方法論的課題と,今後の研究を導く可能性のある解決策を強調した。
GNNは普遍的な解決策ではないことを認めながら、トランスフォーマーのような他の一般的なアーキテクチャと比較し、その潜在的なシナジーを分析することで、論文を締めくくります。
関連論文リスト
- A Survey of Graph Neural Networks in Real world: Imbalance, Noise,
Privacy and OOD Challenges [75.37448213291668]
本稿では,既存のグラフニューラルネットワーク(GNN)を体系的にレビューする。
まず、既存のGNNが直面している4つの重要な課題を強調し、現実のGNNモデルを探究する道を開く。
論文 参考訳(メタデータ) (2024-03-07T13:10:37Z) - From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and
Beyond [32.290102818872526]
グラフニューラルネットワーク(GNN)は、データモデリングにおいて大きな可能性を示しており、様々な分野で広く応用されている。
我々は,GNNの継続的な視点を活用した,最初の体系的かつ包括的な研究のレビューを行う。
論文 参考訳(メタデータ) (2023-10-16T06:57:24Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - A Survey on Explainability of Graph Neural Networks [4.612101932762187]
グラフニューラルネットワーク(GNN)は、グラフベースの強力なディープラーニングモデルである。
本調査は,GNNの既存の説明可能性技術の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-06-02T23:36:49Z) - The Evolution of Distributed Systems for Graph Neural Networks and their
Origin in Graph Processing and Deep Learning: A Survey [17.746899445454048]
グラフニューラルネットワーク(GNN)は、新たな研究分野である。
GNNはレコメンデーションシステム、コンピュータビジョン、自然言語処理、生物学、化学など様々な分野に適用できる。
我々は,大規模GNNソリューションの重要な手法と手法を要約し,分類することで,このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-05-23T09:22:33Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
グラフニューラルネットワーク(GNN)は,さまざまな実世界のシナリオに対して,有能なグラフ学習手法として登場した。
パフォーマンス指向のGNNは、敵の攻撃に対する脆弱性のような潜在的な副作用を示す。
こうした意図しない害を避けるためには、信頼度に特徴付けられる有能なGNNを構築する必要がある。
論文 参考訳(メタデータ) (2022-05-16T02:21:09Z) - Federated Graph Neural Networks: Overview, Techniques and Challenges [16.62839758251491]
グラフニューラルネットワーク(GNN)が注目されている。
社会がデータプライバシーに関心を持つようになるにつれ、GNNはこの新しい標準に適応する必要性に直面している。
このことが近年、フェデレートグラフニューラルネットワーク(FedGNN)の研究の急速な発展につながっている。
論文 参考訳(メタデータ) (2022-02-15T09:05:35Z) - Incorporating Symbolic Domain Knowledge into Graph Neural Networks [18.798760815214877]
グラフ構造化データ(グラフベースニューラルネットワーク、GNN)に特化して開発されたディープニューラルネットワーク
我々は,「頂点富化」という操作を用いて,GNNのこの側面を実証的に検討し,対応するGNNを「VEGNN」と表現する。
論文 参考訳(メタデータ) (2020-10-23T16:22:21Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。