Knowledge Graphs of Driving Scenes to Empower the Emerging Capabilities of Neurosymbolic AI
- URL: http://arxiv.org/abs/2411.03225v2
- Date: Thu, 07 Nov 2024 15:41:20 GMT
- Title: Knowledge Graphs of Driving Scenes to Empower the Emerging Capabilities of Neurosymbolic AI
- Authors: Ruwan Wickramarachchi, Cory Henson, Amit Sheth,
- Abstract summary: Neurosymbolic AI is emerging as a powerful approach for tasks spanning from perception to cognition.
There is a lack of widely available real-world benchmark datasets tailored to Neurosymbolic AI tasks.
We introduce DSceneKG -- a suite of knowledge graphs of driving scenes built from real-world, high-quality scenes from open autonomous driving datasets.
- Score: 1.6385815610837167
- License:
- Abstract: In the era of Generative AI, Neurosymbolic AI is emerging as a powerful approach for tasks spanning from perception to cognition. The use of Neurosymbolic AI has been shown to achieve enhanced capabilities, including improved grounding, alignment, explainability, and reliability. However, due to its nascent stage, there is a lack of widely available real-world benchmark datasets tailored to Neurosymbolic AI tasks. To address this gap and support the evaluation of current and future methods, we introduce DSceneKG -- a suite of knowledge graphs of driving scenes built from real-world, high-quality scenes from multiple open autonomous driving datasets. In this article, we detail the construction process of DSceneKG and highlight its application in seven different tasks. DSceneKG is publicly accessible at: https://github.com/ruwantw/DSceneKG
Related papers
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
Neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness.
Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics.
arXiv Detail & Related papers (2024-09-20T01:32:14Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - AUTONODE: A Neuro-Graphic Self-Learnable Engine for Cognitive GUI Automation [0.0]
Autonomous User-interface Transformation through Online Neuro-graphic Operations and Deep Exploration.
Our engine empowers agents to comprehend and implement complex, adapting to dynamic web environments with unparalleled efficiency.
The versatility and efficacy of AUTONODE are demonstrated through a series of experiments, highlighting its proficiency in managing a diverse array of web-based tasks.
arXiv Detail & Related papers (2024-03-15T10:27:17Z) - Towards Knowledge-driven Autonomous Driving [37.003908817857095]
This paper explores the emerging knowledge-driven autonomous driving technologies.
Our investigation highlights the limitations of current autonomous driving systems.
Knowledge-driven methods with the abilities of cognition, generalization and life-long learning emerge as a promising way to overcome these challenges.
arXiv Detail & Related papers (2023-12-07T14:17:17Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Acquiring Qualitative Explainable Graphs for Automated Driving Scene
Interpretation [17.300690315775576]
The future of automated driving (AD) is rooted in the development of robust, fair and explainable intelligence artificial methods.
This paper proposes a novel representation of AD scenes, called qualitative eXplainable Graph (QXG), dedicated to qualitative reasoning of long-term scenes.
Our experimental results on NuScenes, an open real-world multi-modal dataset, show that the qualitative eXplainable graph of an AD scene composed of 40 frames can be computed in real-time and light in space storage.
arXiv Detail & Related papers (2023-08-24T13:01:46Z) - Neurosymbolic AI - Why, What, and How [9.551858963199987]
Humans interact with the environment using a combination of perception and cognition.
On the other hand, machine cognition encompasses more complex computations.
This article introduces the rapidly emerging paradigm of Neurosymbolic AI.
arXiv Detail & Related papers (2023-05-01T13:27:22Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - ProcTHOR: Large-Scale Embodied AI Using Procedural Generation [55.485985317538194]
ProcTHOR is a framework for procedural generation of Embodied AI environments.
We demonstrate state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation.
arXiv Detail & Related papers (2022-06-14T17:09:35Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding
in 2D and 3D [67.50776195828242]
KITTI-360 is a suburban driving dataset which comprises richer input modalities, comprehensive semantic instance annotations and accurate localization.
For efficient annotation, we created a tool to label 3D scenes with bounding primitives, resulting in over 150k semantic and instance annotated images and 1B annotated 3D points.
We established benchmarks and baselines for several tasks relevant to mobile perception, encompassing problems from computer vision, graphics, and robotics on the same dataset.
arXiv Detail & Related papers (2021-09-28T00:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.