論文の概要: Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging
- arxiv url: http://arxiv.org/abs/2411.03341v1
- Date: Sat, 02 Nov 2024 11:21:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:22:46.824071
- Title: Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging
- Title(参考訳): 多重画像におけるセグメンテーションフリー単セル解析のための解釈可能な埋め込み
- Authors: Simon Gutwein, Daria Lazic, Thomas Walter, Sabine Taschner-Mandl, Roxane Licandro,
- Abstract要約: 多重イメージング(MI)は、複数の生物学的マーカーを、細胞内解像度で別々のイメージングチャネルで同時に可視化することを可能にする。
本稿では,グループ化畳み込みを利用して各画像チャンネルから解釈可能な埋め込み特徴を学習するセグメンテーションフリーなディープラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 1.8687965482996822
- License:
- Abstract: Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution, providing valuable insights into cell-type heterogeneity and spatial organization. However, current computational pipelines rely on cell segmentation algorithms, which require laborious fine-tuning and can introduce downstream errors due to inaccurate single-cell representations. We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel, enabling robust cell-type identification without manual feature selection. Validated on an Imaging Mass Cytometry dataset of 1.8 million cells from neuroblastoma patients, our method enables the accurate identification of known cell types, showcasing its scalability and suitability for high-dimensional MI data.
- Abstract(参考訳): 多重イメージング(MI)は、細胞型不均一性と空間構造に関する貴重な洞察を提供するため、複数の生物学的マーカーを細胞内解像度で分離したイメージングチャネルで同時に可視化することを可能にする。
しかし、現在の計算パイプラインはセルセグメンテーションアルゴリズムに依存しており、精巧な微調整が必要であり、不正確な単一セル表現のために下流エラーを発生させることができる。
そこで我々は,手動による特徴選択を伴わずに頑健なセル型識別を実現するために,グループ畳み込みを利用して,各画像チャンネルから解釈可能な埋め込み特徴を学習するセグメンテーションフリーなディープラーニング手法を提案する。
神経芽腫患者の画像マスサイトメトリーデータセットを用いて、既知の細胞型の正確な同定を可能にし、そのスケーラビリティと高次元MIデータへの適合性を示す。
関連論文リスト
- Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - CellMixer: Annotation-free Semantic Cell Segmentation of Heterogeneous
Cell Populations [9.335273591976648]
異種細胞集団のセマンティックセグメンテーションのための革新的なアノテーションのないアプローチであるCellMixerを提案する。
以上の結果から,CellMixerは複数のセルタイプにまたがる競合セグメンテーション性能と画像モダリティを実現することができることがわかった。
論文 参考訳(メタデータ) (2023-12-01T15:50:20Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
我々は,顕微鏡画像のラベル付けを行うセル分類パイプラインを開発した。
次に、分類ラベルに基づいて分類モデルを訓練する。
2種類のセグメンテーションモデルを、丸みを帯びた形状と不規則な形状のセグメンテーションセルに展開する。
論文 参考訳(メタデータ) (2023-10-22T08:11:08Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions [26.613802004468578]
このベンチマークは、50以上の生物実験の1500以上のラベル付き画像で構成されている。
上位の参加者は、既存の手法を超越したTransformerベースのディープラーニングアルゴリズムを開発した。
このベンチマークと改良されたアルゴリズムは、顕微鏡画像におけるより正確で多用途な細胞解析のための有望な道を提供する。
論文 参考訳(メタデータ) (2023-08-10T21:59:23Z) - Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation [0.0]
深層学習(DL)は細胞セグメンテーションタスクにおいて強力なポテンシャルを示すが、一般化が不十分である。
本稿では,Multi-Microscopic-view Cell semi-supervised (MMCS) と呼ばれる,新しい半教師付き細胞分割法を提案する。
MMCSは、マイクロスコープの異なる低ラベルの多姿勢細胞画像を用いて、細胞セグメンテーションモデルを訓練することができる。
F1スコアは0.8239であり、全てのケースのランニング時間は許容時間の範囲内である。
論文 参考訳(メタデータ) (2023-03-21T08:08:13Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
マルチタスク学習パラダイムにおけるセルセグメンテーションのための新しい教師付き手法を提案する。
ネットワークの予測効率を向上させるために、領域とセル境界検出に基づくマルチタスク損失の組み合わせを用いる。
検証セットで全体のDiceスコアが0.93であり、これは最近の教師なし手法で15.9%以上の改善であり、一般的な教師付きU-netアルゴリズムを平均5.8%以上上回っている。
論文 参考訳(メタデータ) (2020-05-19T11:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。