論文の概要: Tabular Data Synthesis with Differential Privacy: A Survey
- arxiv url: http://arxiv.org/abs/2411.03351v1
- Date: Mon, 04 Nov 2024 06:32:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:54.732455
- Title: Tabular Data Synthesis with Differential Privacy: A Survey
- Title(参考訳): 差分プライバシーを用いたタブラルデータ合成:サーベイ
- Authors: Mengmeng Yang, Chi-Hung Chi, Kwok-Yan Lam, Jie Feng, Taolin Guo, Wei Ni,
- Abstract要約: データ共有はコラボレーティブなイノベーションの前提条件であり、さまざまなデータセットを活用して深い洞察を得ることを可能にします。
データ合成は、実際のデータの統計特性を保存する人工データセットを生成することで、この問題に対処する。
プライバシーに配慮したデータ共有に対する、有望なアプローチとして、異なるプライベートなデータ合成が登場している。
- 参考スコア(独自算出の注目度): 24.500349285858597
- License:
- Abstract: Data sharing is a prerequisite for collaborative innovation, enabling organizations to leverage diverse datasets for deeper insights. In real-world applications like FinTech and Smart Manufacturing, transactional data, often in tabular form, are generated and analyzed for insight generation. However, such datasets typically contain sensitive personal/business information, raising privacy concerns and regulatory risks. Data synthesis tackles this by generating artificial datasets that preserve the statistical characteristics of real data, removing direct links to individuals. However, attackers can still infer sensitive information using background knowledge. Differential privacy offers a solution by providing provable and quantifiable privacy protection. Consequently, differentially private data synthesis has emerged as a promising approach to privacy-aware data sharing. This paper provides a comprehensive overview of existing differentially private tabular data synthesis methods, highlighting the unique challenges of each generation model for generating tabular data under differential privacy constraints. We classify the methods into statistical and deep learning-based approaches based on their generation models, discussing them in both centralized and distributed environments. We evaluate and compare those methods within each category, highlighting their strengths and weaknesses in terms of utility, privacy, and computational complexity. Additionally, we present and discuss various evaluation methods for assessing the quality of the synthesized data, identify research gaps in the field and directions for future research.
- Abstract(参考訳): データ共有はコラボレーティブなイノベーションの前提条件であり、さまざまなデータセットを活用して深い洞察を得ることを可能にします。
FinTechやSmart Manufacturingのような現実世界のアプリケーションでは、トランザクショナルデータは、しばしば表形式で生成され、洞察生成のために分析される。
しかし、そのようなデータセットは一般的に機密性の高い個人情報やビジネス情報が含まれており、プライバシー上の懸念や規制上のリスクが高まる。
データ合成は、実際のデータの統計特性を保存する人工データセットを生成し、個人への直接的なリンクを削除することで、この問題に対処する。
しかし、攻撃者は依然として背景知識を用いて機密情報を推測することができる。
差別化プライバシは、証明可能で定量化可能なプライバシ保護を提供することによって、ソリューションを提供する。
その結果、プライバシーに配慮したデータ共有に対する有望なアプローチとして、微分プライベートなデータ合成が出現した。
本稿では,差分プライバシー制約下での表型データ生成における各生成モデル固有の課題を取り上げ,既存の差分プライベートな表型データ合成手法の概要について述べる。
我々はこれらの手法を,その生成モデルに基づく統計的および深層学習に基づくアプローチに分類し,集中型環境と分散型環境の両方で議論する。
これらの手法を各カテゴリで評価・比較し,実用性,プライバシ,計算複雑性の観点からその長所と短所を強調した。
さらに,合成データの質を評価するための様々な評価手法を提案し,今後の研究の方向性と分野における研究ギャップを同定する。
関連論文リスト
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
プライバシーは学習分析(LA)の進歩に大きな障害となり、匿名化の不十分さやデータ誤用といった課題を提示している。
合成データは潜在的な対策として現れ、堅牢なプライバシー保護を提供する。
LAの合成データに関する以前の研究では、プライバシーとデータユーティリティの微妙なバランスを評価するのに不可欠な、徹底的な評価が欠如していた。
論文 参考訳(メタデータ) (2024-01-12T20:27:55Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
データリリースフレームワークである3A(Approximate, Adapt, Anonymize)を導入し、機械学習のデータユーティリティを最大化する。
本稿では,実データセットと民生データセットでトレーニングしたモデルの性能指標の相違が最小限に抑えられることを示す実験的な証拠を示す。
論文 参考訳(メタデータ) (2023-07-04T18:37:11Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - Synthetic Data: Methods, Use Cases, and Risks [11.413309528464632]
研究コミュニティと業界の両方で勢いを増す可能性のある選択肢は、代わりに合成データを共有することだ。
我々は、合成データについて穏やかに紹介し、そのユースケース、未適応のプライバシー問題、そしてその固有の制限を効果的なプライバシー強化技術として論じます。
論文 参考訳(メタデータ) (2023-03-01T16:35:33Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Holdout-Based Fidelity and Privacy Assessment of Mixed-Type Synthetic
Data [0.0]
aiベースのデータ合成はここ数年で急速に進歩しており、プライバシを尊重するデータ共有を可能にするという約束がますます認識されている。
我々は,合成データソリューションの信頼性とプライバシリスクを定量化するための,ホールドアウトに基づく実証的評価フレームワークを紹介し,実証する。
論文 参考訳(メタデータ) (2021-04-01T17:30:23Z) - Differentially Private Synthetic Data: Applied Evaluations and
Enhancements [4.749807065324706]
異なるプライベートデータ合成は、個人の詳細を露出から保護する。
データ合成のための4つの差分私的生成対向ネットワークの評価を行った。
合成データを生成するためのアンサンブルに基づくモデリング手法であるQUAILを提案する。
論文 参考訳(メタデータ) (2020-11-11T04:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。