論文の概要: Rainfall regression from C-band Synthetic Aperture Radar using Multi-Task Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2411.03480v1
- Date: Tue, 05 Nov 2024 20:06:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:36.190920
- Title: Rainfall regression from C-band Synthetic Aperture Radar using Multi-Task Generative Adversarial Networks
- Title(参考訳): マルチタスク生成対向ネットワークを用いたCバンド合成開口レーダの降雨回帰
- Authors: Aurélien Colin, Romain Husson,
- Abstract要約: 本稿では,SAR(Synthetic Aperture Radar)から1ピクセルあたり200mの空間分解能で降水速度を推定するデータ駆動手法を提案する。
完全なNEXRADアーカイブを利用して、Sentinel-1データとのコロケーションを検索する。
その結果,降雨量の推定精度が向上し,最大15m/sのシナリオに性能を拡張できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces a data-driven approach to estimate precipitation rates from Synthetic Aperture Radar (SAR) at a spatial resolution of 200 meters per pixel. It addresses previous challenges related to the collocation of SAR and weather radar data, specifically the misalignment in collocations and the scarcity of rainfall examples under strong wind. To tackle these challenges, the paper proposes a multi-objective formulation, introducing patch-level components and an adversarial component. It exploits the full NEXRAD archive to look for potential co-locations with Sentinel-1 data. With additional enhancements to the training procedure and the incorporation of additional inputs, the resulting model demonstrates improved accuracy in rainfall estimates and the ability to extend its performance to scenarios up to 15 m/s.
- Abstract(参考訳): 本稿では,SAR(Synthetic Aperture Radar)から1ピクセルあたり200mの空間分解能で降水速度を推定するためのデータ駆動手法を提案する。
これは、SARと気象レーダーのデータ、特に強風下での降雨事例の欠如に関する過去の課題に対処する。
これらの課題に対処するために,パッチレベルのコンポーネントと逆成分を導入した多目的定式化を提案する。
完全なNEXRADアーカイブを利用して、Sentinel-1データとのコロケーションを検索する。
トレーニング手順のさらなる強化と追加入力の導入により、降雨推定精度の向上と15m/sまでの性能向上が示された。
関連論文リスト
- SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Enhanced Radar Perception via Multi-Task Learning: Towards Refined Data for Sensor Fusion Applications [6.237187007098249]
本研究は,3次元物体に関連付けられたレーダー点の高さを推定するための学習に基づくアプローチを導入する。
平均レーダー絶対高さ誤差は最先端高度法と比較して1.69mから0.25mに減少する。
論文 参考訳(メタデータ) (2024-04-09T09:42:18Z) - PAUNet: Precipitation Attention-based U-Net for rain prediction from
satellite radiance data [0.0]
本稿では,衛星放射データから降水を予測するディープラーニングアーキテクチャPAUNetを提案する。
PAUNetはU-NetとRes-Netの亜種であり、マルチバンド衛星画像の大規模コンテキスト情報を効果的にキャプチャするために設計された。
PAUNetは、ヨーロッパ各地のデータセットに基づいてトレーニングされており、ベースラインモデルよりも高い臨界成功指数(CSI)スコアで顕著な精度を示している。
論文 参考訳(メタデータ) (2023-11-30T07:22:55Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Reduction of rain-induced errors for wind speed estimation on SAR
observations using convolutional neural networks [0.16067645574373132]
降雨時の誤差を低減した風速推定器を訓練する。
その結果,SAR製品における降雨関連誤差を補正する深層学習モデルの能力が示された。
論文 参考訳(メタデータ) (2023-03-16T10:19:14Z) - Rain regime segmentation of Sentinel-1 observation learning from NEXRAD
collocations with Convolution Neural Networks [0.16067645574373132]
NOAAのNext-Generation Radar (NEXRAD)のような地上の気象レーダーは、降雨の反射率と降雨量の推定を提供する。
本稿では,降雨状況の観点から,SAR観測を3段階に区分する深層学習手法を提案する。
我々は、コロケーションされたSentinel-1/NEXRADデータセットでトレーニングされた畳み込みニューラルネットワークが、最先端のフィルタリング方式よりも明らかに優れていることを実証した。
論文 参考訳(メタデータ) (2022-07-15T08:05:41Z) - End-to-end system for object detection from sub-sampled radar data [18.462990836437626]
本稿では,車載環境下で物体検出を行うために,サブサンプリングレーダデータを利用するエンドツーエンド信号処理パイプラインを提案する。
極端気象条件下での試料の20%を用いて再構成したレーダーデータに基づくロバスト検出を示す。
微調整セットで20%のサンプルレーダデータを生成し,AP50が1.1%,AP50が3%向上した。
論文 参考訳(メタデータ) (2022-03-08T08:02:33Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。