Automatic Generation of Question Hints for Mathematics Problems using Large Language Models in Educational Technology
- URL: http://arxiv.org/abs/2411.03495v1
- Date: Tue, 05 Nov 2024 20:18:53 GMT
- Title: Automatic Generation of Question Hints for Mathematics Problems using Large Language Models in Educational Technology
- Authors: Junior Cedric Tonga, Benjamin Clement, Pierre-Yves Oudeyer,
- Abstract summary: This work explores using Large Language Models (LLMs) as teachers to generate effective hints for students simulated through LLMs.
The results show that model errors increase with higher temperature settings.
Interestingly, Llama-3-8B-Instruct as a teacher showed better overall performance than GPT-4o.
- Score: 17.91379291654773
- License:
- Abstract: The automatic generation of hints by Large Language Models (LLMs) within Intelligent Tutoring Systems (ITSs) has shown potential to enhance student learning. However, generating pedagogically sound hints that address student misconceptions and adhere to specific educational objectives remains challenging. This work explores using LLMs (GPT-4o and Llama-3-8B-instruct) as teachers to generate effective hints for students simulated through LLMs (GPT-3.5-turbo, Llama-3-8B-Instruct, or Mistral-7B-instruct-v0.3) tackling math exercises designed for human high-school students, and designed using cognitive science principles. We present here the study of several dimensions: 1) identifying error patterns made by simulated students on secondary-level math exercises; 2) developing various prompts for GPT-4o as a teacher and evaluating their effectiveness in generating hints that enable simulated students to self-correct; and 3) testing the best-performing prompts, based on their ability to produce relevant hints and facilitate error correction, with Llama-3-8B-Instruct as the teacher, allowing for a performance comparison with GPT-4o. The results show that model errors increase with higher temperature settings. Notably, when hints are generated by GPT-4o, the most effective prompts include prompts tailored to specific errors as well as prompts providing general hints based on common mathematical errors. Interestingly, Llama-3-8B-Instruct as a teacher showed better overall performance than GPT-4o. Also the problem-solving and response revision capabilities of the LLMs as students, particularly GPT-3.5-turbo, improved significantly after receiving hints, especially at lower temperature settings. However, models like Mistral-7B-Instruct demonstrated a decline in performance as the temperature increased.
Related papers
- SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights [89.56181323849512]
We propose SuperCorrect, a framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model.
In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts.
In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model.
arXiv Detail & Related papers (2024-10-11T17:25:52Z) - Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors [78.53699244846285]
Large language models (LLMs) present an opportunity to scale high-quality personalized education to all.
LLMs struggle to precisely detect student's errors and tailor their feedback to these errors.
Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions.
arXiv Detail & Related papers (2024-07-12T10:11:40Z) - Generative AI for Enhancing Active Learning in Education: A Comparative Study of GPT-3.5 and GPT-4 in Crafting Customized Test Questions [2.0411082897313984]
This study investigates how LLMs, specifically GPT-3.5 and GPT-4, can develop tailored questions for Grade 9 math.
By utilizing an iterative method, these models adjust questions based on difficulty and content, responding to feedback from a simulated'student' model.
arXiv Detail & Related papers (2024-06-20T00:25:43Z) - Feedback-Generation for Programming Exercises With GPT-4 [0.0]
This paper explores the quality of GPT-4 Turbo's generated output for prompts containing both the programming task specification and a student's submission as input.
The output was qualitatively analyzed regarding correctness, personalization, fault localization, and other features identified in the material.
arXiv Detail & Related papers (2024-03-07T12:37:52Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
We propose a framework for feedback generation that optimize both correctness and alignment using reinforcement learning (RL)
Specifically, we use GPT-4's annotations to create preferences over feedback pairs in an augmented dataset for training via direct preference optimization (DPO)
arXiv Detail & Related papers (2024-03-02T20:25:50Z) - Prompt Engineering or Fine Tuning: An Empirical Assessment of Large
Language Models in Automated Software Engineering Tasks [8.223311621898983]
GPT-4 with conversational prompts showed drastic improvement compared to GPT-4 with automatic prompting strategies.
fully automated prompt engineering with no human in the loop requires more study and improvement.
arXiv Detail & Related papers (2023-10-11T00:21:00Z) - Instructed to Bias: Instruction-Tuned Language Models Exhibit Emergent Cognitive Bias [57.42417061979399]
Recent studies show that instruction tuning (IT) and reinforcement learning from human feedback (RLHF) improve the abilities of large language models (LMs) dramatically.
In this work, we investigate the effect of IT and RLHF on decision making and reasoning in LMs.
Our findings highlight the presence of these biases in various models from the GPT-3, Mistral, and T5 families.
arXiv Detail & Related papers (2023-08-01T01:39:25Z) - Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning [92.85265959892115]
This paper introduces the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction.
Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers.
To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts.
arXiv Detail & Related papers (2023-06-26T10:26:33Z) - Let GPT be a Math Tutor: Teaching Math Word Problem Solvers with
Customized Exercise Generation [39.282695549919495]
We present a novel approach for distilling math word problem solving capabilities from large language models (LLMs) into smaller, more efficient student models.
Our approach is designed to consider the student model's weaknesses and foster a tailored learning experience by generating targeted exercises aligned with educational science principles.
arXiv Detail & Related papers (2023-05-22T17:36:14Z) - Reframing Instructional Prompts to GPTk's Language [72.69833640335519]
We propose reframing techniques for model designers to create effective prompts for language models.
Our results show that reframing improves few-shot learning performance by 14% while reducing sample complexity.
The performance gains are particularly important on large language models, such as GPT3 where tuning models or prompts on large datasets is not feasible.
arXiv Detail & Related papers (2021-09-16T09:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.