Enhancing Weakly Supervised Semantic Segmentation for Fibrosis via Controllable Image Generation
- URL: http://arxiv.org/abs/2411.03551v1
- Date: Tue, 05 Nov 2024 23:11:26 GMT
- Title: Enhancing Weakly Supervised Semantic Segmentation for Fibrosis via Controllable Image Generation
- Authors: Zhiling Yue, Yingying Fang, Liutao Yang, Nikhil Baid, Simon Walsh, Guang Yang,
- Abstract summary: Fibrotic Lung Disease (FLD) is a severe condition marked by lung stiffening and scarring, leading to respiratory decline.
High-resolution computed tomography (HRCT) is critical for diagnosing and monitoring FLD; however, fibrosis appears as irregular, diffuse patterns with unclear boundaries.
We propose DiffSeg, a novel weakly supervised semantic segmentation (WSSS) method that uses image-level annotations to generate pixel-level fibrosis segmentation.
- Score: 6.135895757905315
- License:
- Abstract: Fibrotic Lung Disease (FLD) is a severe condition marked by lung stiffening and scarring, leading to respiratory decline. High-resolution computed tomography (HRCT) is critical for diagnosing and monitoring FLD; however, fibrosis appears as irregular, diffuse patterns with unclear boundaries, leading to high inter-observer variability and time-intensive manual annotation. To tackle this challenge, we propose DiffSeg, a novel weakly supervised semantic segmentation (WSSS) method that uses image-level annotations to generate pixel-level fibrosis segmentation, reducing the need for fine-grained manual labeling. Additionally, our DiffSeg incorporates a diffusion-based generative model to synthesize HRCT images with different levels of fibrosis from healthy slices, enabling the generation of the fibrosis-injected slices and their paired fibrosis location. Experiments indicate that our method significantly improves the accuracy of pseudo masks generated by existing WSSS methods, greatly reducing the complexity of manual labeling and enhancing the consistency of the generated masks.
Related papers
- LN-Gen: Rectal Lymph Nodes Generation via Anatomical Features [8.428364324501048]
The complexity of the surrounding anatomical structures and the scarcity of annotated data pose significant challenges.
This study introduces a novel lymph node synthesis technique aimed at generating diverse and realistic synthetic rectal lymph node samples.
arXiv Detail & Related papers (2024-08-27T11:40:23Z) - Shape-aware synthesis of pathological lung CT scans using CycleGAN for enhanced semi-supervised lung segmentation [0.0]
This paper emphasizes the use of CycleGAN for unpaired image-to-image translation.
It provides an augmentation method able to generate fake pathological images matching an existing ground truth.
Preliminary results from this research demonstrate significant qualitative and quantitative improvements.
arXiv Detail & Related papers (2024-05-14T12:45:49Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
We propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images.
The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions.
arXiv Detail & Related papers (2024-01-19T08:54:54Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
Self-supervised masked image modeling has shown promising results on natural images.
However, directly applying such methods to medical images remains challenging.
We propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP)
arXiv Detail & Related papers (2023-09-08T13:18:10Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Modality Cycles with Masked Conditional Diffusion for Unsupervised
Anomaly Segmentation in MRI [2.5847188023177403]
Unsupervised anomaly segmentation aims to detect patterns that are distinct from any patterns processed during training.
This paper introduces Masked Modality Cycles with Conditional Diffusion (MMCCD), a method that enables segmentation of anomalies across diverse patterns in multimodal MRI.
We show that our method compares favorably to previous unsupervised approaches based on image reconstruction and denoising with autoencoders and diffusion models.
arXiv Detail & Related papers (2023-08-30T17:16:02Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - Accurate Lung Nodules Segmentation with Detailed Representation Transfer
and Soft Mask Supervision [19.64536342490214]
Smallness and variety of lung nodules make accurate lung nodule segmentation difficult.
We introduce a novel segmentation mask named Soft Mask which has richer and more accurate edge details description.
A novel Network with detailed representation transfer and Soft Mask supervision (DSNet) is proposed to process the input low-resolution images of lung nodules into high-quality segmentation results.
arXiv Detail & Related papers (2020-07-29T02:38:02Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.