論文の概要: Kolb-Based Experiential Learning for Generalist Agents with Human-Level Kaggle Data Science Performance
- arxiv url: http://arxiv.org/abs/2411.03562v2
- Date: Thu, 04 Sep 2025 14:07:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 14:03:58.599671
- Title: Kolb-Based Experiential Learning for Generalist Agents with Human-Level Kaggle Data Science Performance
- Title(参考訳): 人レベルカグルデータサイエンス性能を有するジェネリストエージェントに対するコルブに基づく経験的学習
- Authors: Antoine Grosnit, Alexandre Maraval, Refinath S N, Zichao Zhao, James Dora, Giuseppe Paolo, Albert Thomas, Jonas Gonzalez, Abhineet Kumar, Khyati Khandelwal, Abdelhakim Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao, Balázs Kégl, Jun Wang,
- Abstract要約: 本稿では,自律エージェントに対するVygotskyのZPDを用いて,Kolbの学習サイクルの計算フレームワークを提案する。
Agent Kは、KolbとVygotskyにインスパイアされた人間の認知学習をうまく統合する第1のAIシステムである。
金9個、銀8個、銅12個で、メダル獲得競争で金4個、銀4個を含む。エージェントKは、コルブとヴィーゴツキーにインスパイアされた人間の認知学習をうまく統合する第1のAIシステムである。
- 参考スコア(独自算出の注目度): 75.45309035531112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human expertise emerges through iterative cycles of interaction, reflection, and internal model updating, which are central to cognitive theories such as Kolb's experiential learning and Vygotsky's zone of proximal development. In contrast, current AI systems, particularly LLM agents, rely on static pre-training or rigid workflows, lacking mechanisms for continual adaptation. Recent studies identified early cognitive traits in LLM agents (reflection, revision, and self-correction) suggesting foundational elements of human-like experiential learning. Thus the key question: Can we design LLM agents capable of structured, cognitively grounded learning similar to human processes? In response, we propose a computational framework of Kolb's learning cycle with Vygotsky's ZPD for autonomous agents. Our architecture separates extrinsic (environment interaction) and intrinsic (internal reflection/abstraction) functions, enabling cognitively grounded scaffolded learning, where the agent initially learns within structured environments, followed by open-ended generalisation. This approach empowers agents to master complex tasks ; domains that traditional fine-tuning or simple reflective methods could not tackle effectively. Its potential is powerfully demonstrated via direct comparison with humans in real-world Kaggle data science competitions. Learning fully automated data science code generation across 81 tasks, our system, Agent K, demonstrated the ability to perform the entire workflow autonomously, achieving an Elo-MMR score of 1694, beyond median score of the Kaggle Masters (the top 2% among 200,000 users) of our study. With 9 gold, 8 silver, and 12 bronze medals level performance - including 4 gold and 4 silver on prize-awarding competitions - Agent K is the 1st AI system to successfully integrate Kolb- and Vygotsky-inspired human cognitive learning, marking a major step toward generalist AI.
- Abstract(参考訳): 人間の専門知識は、相互作用、リフレクション、内部モデル更新の反復サイクルを通じて出現し、これはコルブの実験的学習やヴィゴツキーの近位発達ゾーンのような認知理論の中心である。
対照的に、現在のAIシステム、特にLLMエージェントは、静的事前訓練または剛性ワークフローに依存しており、継続的な適応のメカニズムが欠如している。
近年の研究では、LLMエージェントの初期の認知特性(反射、修正、自己補正)が人間のような経験的学習の基礎的要素を示唆している。
人間のプロセスと同様、構造化され、認知的に基礎付けられた学習が可能なLLMエージェントを設計できるだろうか?
そこで本稿では,自律エージェントに対するVygotskyのZPDを用いて,Kolbの学習サイクルの計算フレームワークを提案する。
我々のアーキテクチャは、外在的(環境相互作用)と内在的(内部反射/吸収)機能を分離し、認知的基盤の足場学習を可能にし、エージェントは最初、構造化された環境内で学習し、その後、オープンな一般化を行う。
このアプローチはエージェントに複雑なタスクをマスターする権限を与えます。
そのポテンシャルは、実世界のKaggleデータサイエンスコンペティションにおいて、人間と直接比較することで強力に実証されている。
81のタスクで完全に自動化されたデータサイエンスコード生成を学習し、私たちのシステムであるAgent Kは、1694年のElo-MMRスコアを達成し、Kaggle Mastersの中央値(20万人のユーザのうち、上位2%)を超えた、ワークフロー全体を自律的に実行できることを示しました。
金9個、銀8個、銅12個で、賞金獲得競争で金4個、銀4個を含む。エージェントKはコルブとヴィゴツキーにインスパイアされた人間の認知学習を成功させる第1のAIシステムである。
関連論文リスト
- eSapiens: A Platform for Secure and Auditable Retrieval-Augmented Generation [10.667949307405983]
eSapiensはAI(AI)プラットフォームで、ビジネス指向のトリフェクタ(プロプライエタリなデータ、運用、主要な言語モデル(LLM))を中心に開発されている。
eSapiensは、企業がAI資産を完全にコントロールし、AI知識の保持とデータセキュリティのためのすべてを社内に保持する。
論文 参考訳(メタデータ) (2025-07-13T11:41:44Z) - Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning [29.580108004844856]
大規模言語モデル(LLM)上に構築されたマルチエージェントシステム(MAS)は、複雑で現実的なタスクを解決するための有望な道を提供する。
テストタイムスケーリング(TTS)の最近の進歩は、難解な推論タスクにおいて、シングルエージェントのパフォーマンスを大幅に改善した。
モデルレベルのトレーニングとシステムレベルの調整の両方を通じて協調推論を強化するために設計された適応型マルチエージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-14T00:27:45Z) - Boosting Virtual Agent Learning and Reasoning: A Step-wise, Multi-dimensional, and Generalist Reward Model with Benchmark [72.46357004059661]
ステップワイドな多次元ジェネリスト・リワードモデルであるSimisalを提案する。
エージェントトレーニング用のきめ細かい信号を提供し、推論時間スケーリングのためのより良いアクションを選択することができる。
仮想エージェント領域の最初のベンチマークをステップワイドで多次元の報酬モデルトレーニングと評価のために導入する。
論文 参考訳(メタデータ) (2025-03-24T13:30:47Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
大規模言語モデル(LLM)は、自律的なエージェントとして顕著な能力を示している。
既存のベンチマークでは、単一エージェントタスクにフォーカスするか、狭いドメインに限定されており、マルチエージェントのコーディネーションと競合のダイナミクスを捉えていない。
多様な対話シナリオにまたがってLLMベースのマルチエージェントシステムを評価するためのベンチマークであるMultiAgentBenchを紹介する。
論文 参考訳(メタデータ) (2025-03-03T05:18:50Z) - AutoKaggle: A Multi-Agent Framework for Autonomous Data Science Competitions [45.0447118979891]
AutoKaggleは、コード実行と単体テストを組み合わせた反復的な開発プロセスを実装し、コードの正しさとロジックの整合性を保証する。
データクリーニング、特徴工学、モデリングのための検証済み機能を含む汎用データサイエンスツールキットは、このソリューションの基礎を形成します。
AutoKaggleは、一般的なデータサイエンスパイプラインにおけるバリデーションレート0.85と総合スコア0.82を達成する。
論文 参考訳(メタデータ) (2024-10-27T12:44:25Z) - MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering [35.237253622981264]
MLE-benchは、AIエージェントが機械学習エンジニアリングでどのように機能するかを測定するためのベンチマークである。
われわれはKaggleから75のMLエンジニアリング関連のコンペを開催する。
私たちはKaggleが公開しているリーダーボードを使って、各競技の人間ベースラインを確立します。
論文 参考訳(メタデータ) (2024-10-09T17:34:27Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Tool-Augmented Reward Modeling [58.381678612409]
本稿では,外部環境へのアクセスによるRMの強化により,制約に対処するツール拡張された嗜好モデリング手法であるThemisを提案する。
我々の研究は、外部ツールをRMに統合し、様々な外部ソースとの相互作用を可能にすることを目的としている。
人間の評価では、テミスで訓練されたRLHFはベースラインと比較して平均32%の勝利率を得る。
論文 参考訳(メタデータ) (2023-10-02T09:47:40Z) - Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
本研究では、認識タスクのための地域レベルの特徴表現を事前学習するための時間順述前文タスクであるTempOを提案する。
我々は各フレームを、オブジェクト検出やトラッキングシステムにとって自然な表現である、未順序な特徴ベクトルのセットで埋め込む。
BDD100K、nu Images、MOT17データセットの大規模な評価は、私たちのTempO事前学習アプローチがシングルフレームの自己教師型学習方法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-02-17T18:18:27Z) - Ensemble Value Functions for Efficient Exploration in Multi-Agent Reinforcement Learning [18.762198598488066]
マルチエージェント強化学習(MARL)は、エージェントが広い共同行動空間内で探索する必要がある。
EMAXは価値ベースのMARLアルゴリズムをシームレスに拡張するフレームワークである。
論文 参考訳(メタデータ) (2023-02-07T12:51:20Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
この研究は、ニューラルネットワークとデータ拡張のカップリングの可能性を検討し、それらを共同で検索する効果的なアルゴリズムを提案する。
CIFAR-10では97.91%、ImageNetデータセットでは76.6%の精度で97.91%の精度を達成し、検索アルゴリズムの優れた性能を示している。
論文 参考訳(メタデータ) (2021-09-30T17:15:17Z) - COM2SENSE: A Commonsense Reasoning Benchmark with Complementary
Sentences [21.11065466376105]
常識推論は人間にとって直感的であるが、人工知能(AI)の長期的な課題である。
事前訓練された言語モデルの最近の進歩は、いくつかのCommonsenseベンチマークデータセットで有望な結果を示している。
本稿では,自然言語真偽文からなる新しいコモンセンス推論ベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:31:55Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
本稿では、エンドツーエンドの効率とデータ付加訓練の効率を評価するための新しいベンチマークプロトコルを提案する。
評価プロトコルは, ランダム探索よりも, 人間のチューニング行動とよく一致していることを示すために, 人間の実験を行った。
次に,提案したベンチマークフレームワークをコンピュータビジョン,自然言語処理,強化学習,グラフマイニングなどのタスクに適用する。
論文 参考訳(メタデータ) (2020-10-19T21:46:39Z) - AIBench Training: Balanced Industry-Standard AI Training Benchmarking [26.820244556465333]
新しいAIアーキテクチャ/システムのアーリーステージ評価には、安価なベンチマークが必要だ。
私たちは現実世界のベンチマークを使って、学習力学に影響を与える要因をカバーしています。
私たちは、最も包括的なAIトレーニングベンチマークスイートにコントリビュートしています。
論文 参考訳(メタデータ) (2020-04-30T11:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。