論文の概要: Boosting Virtual Agent Learning and Reasoning: A Step-wise, Multi-dimensional, and Generalist Reward Model with Benchmark
- arxiv url: http://arxiv.org/abs/2503.18665v1
- Date: Mon, 24 Mar 2025 13:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:41.219997
- Title: Boosting Virtual Agent Learning and Reasoning: A Step-wise, Multi-dimensional, and Generalist Reward Model with Benchmark
- Title(参考訳): 仮想エージェント学習と推論の促進: ベンチマークによるステップワイド・多次元・一般リワードモデル
- Authors: Bingchen Miao, Yang Wu, Minghe Gao, Qifan Yu, Wendong Bu, Wenqiao Zhang, Yunfei Li, Siliang Tang, Tat-Seng Chua, Juncheng Li,
- Abstract要約: ステップワイドな多次元ジェネリスト・リワードモデルであるSimisalを提案する。
エージェントトレーニング用のきめ細かい信号を提供し、推論時間スケーリングのためのより良いアクションを選択することができる。
仮想エージェント領域の最初のベンチマークをステップワイドで多次元の報酬モデルトレーニングと評価のために導入する。
- 参考スコア(独自算出の注目度): 72.46357004059661
- License:
- Abstract: The development of Generalist Virtual Agents (GVAs) powered by Multimodal Large Language Models (MLLMs) has shown significant promise in autonomous task execution. However, current training paradigms face critical limitations, including reliance on outcome supervision and labor-intensive human annotations. To address these challenges, we propose Similar, a Step-wise Multi-dimensional Generalist Reward Model, which offers fine-grained signals for agent training and can choose better action for inference-time scaling. Specifically, we begin by systematically defining five dimensions for evaluating agent actions. Building on this framework, we design an MCTS-P algorithm to automatically collect and annotate step-wise, five-dimensional agent execution data. Using this data, we train Similar with the Triple-M strategy. Furthermore, we introduce the first benchmark in the virtual agent domain for step-wise, multi-dimensional reward model training and evaluation, named SRM. This benchmark consists of two components: SRMTrain, which serves as the training set for Similar, and SRMEval, a manually selected test set for evaluating the reward model. Experimental results demonstrate that Similar, through its step-wise, multi-dimensional assessment and synergistic gain, provides GVAs with effective intermediate signals during both training and inference-time scaling. The code is available at https://github.com/Galery23/Similar-v1.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)を利用した汎用仮想エージェント(GVA)の開発は、自律的なタスク実行において大きな可能性を秘めている。
しかし、現在の訓練パラダイムは、成果の監督や労働集約的な人間のアノテーションへの依存など、重大な制限に直面している。
これらの課題に対処するために,エージェント訓練のための微細な信号を提供し,推論時間スケーリングのためのより良いアクションを選択可能な,ステップワイドな多次元ジェネリスト・リワードモデルであるSmall-wise Multi-dimensional Generalist Reward Modelを提案する。
具体的には,エージェント動作を評価するための5次元を体系的に定義することから始める。
本研究では,MCTS-Pアルゴリズムを設計し,段階的に5次元のエージェント実行データを自動的に収集・注釈する。
このデータを使って、Triple-M戦略と同じようなことを訓練します。
さらに、ステップワイドで多次元の報酬モデルトレーニングと評価のための仮想エージェントドメインの最初のベンチマーク、SRMを紹介した。
このベンチマークは2つのコンポーネントで構成されている: SRMTrainはSimisalのトレーニングセットとして機能し、SRMEvalは報酬モデルを評価するために手動で選択されたテストセットである。
実験結果から, ステップワイドな多次元評価と相乗的ゲインにより, トレーニングおよび推論時間スケーリングの双方において, GVAに効果的な中間信号を与えることがわかった。
コードはhttps://github.com/Galery23/Similar-v1.comで公開されている。
関連論文リスト
- Process Reward Models for LLM Agents: Practical Framework and Directions [10.986389591866617]
エージェントプロセス・リワード・モデル (AgentPRM) を導入する。
InversePRMを提案する。これは、明示的な結果の監督なしに、デモから直接プロセス報酬を学習する。
ALFWorldベンチマークで評価したところ、AgentPRMとInversePRMで訓練された3Bモデルは、強力なGPT-4oベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-02-14T17:34:28Z) - 2D Matryoshka Training for Information Retrieval [32.44832240958393]
2D Matryoshka Trainingは、エンコーダモデルを様々なレイヤ次元のセットアップで同時にトレーニングするために設計された埋め込み表現トレーニングアプローチである。
STSタスクにおける2D Matryoshka Trainingの両バージョンの実装と評価を行い,解析を検索タスクに拡張した。
論文 参考訳(メタデータ) (2024-11-26T10:47:35Z) - Sports-Traj: A Unified Trajectory Generation Model for Multi-Agent Movement in Sports [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを紹介する。
バスケットボールU,サッカーU,サッカーUの3つの実践的スポーツデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - Meta-training with Demonstration Retrieval for Efficient Few-shot
Learning [11.723856248352007]
大規模な言語モデルは、数ショットのNLPタスクで印象的な結果を示す。
これらのモデルはメモリと計算集約である。
本稿では,実演検索によるメタトレーニングを提案する。
論文 参考訳(メタデータ) (2023-06-30T20:16:22Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search [4.220439000486713]
検索結果の質を向上させるために,頑健な多言語モデルを提案する。
事前学習の段階では、mlmタスク、分類タスク、コントラスト学習タスクを採用する。
微調整段階では、自信ある学習、指数的移動平均法(EMA)、対人訓練(FGM)、正規化ドロップアウト戦略(R-Drop)を用いる。
論文 参考訳(メタデータ) (2023-01-31T07:31:34Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
マルチモーダル相互情報事前学習(M3I事前学習)を最大化するオールインワン単段階事前学習手法を提案する。
提案手法は,ImageNet分類,オブジェクト検出,LVIS長鎖オブジェクト検出,ADE20kセマンティックセマンティックセマンティックセマンティクスなど,様々なビジョンベンチマークにおける事前学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-17T18:59:49Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
各種音声タスクの事前学習モデルを評価するための新しいベンチマークであるSUPERB-SGを紹介する。
データドメインのシフトの下で、事前訓練されたモデルによって学習された表現の堅牢性をテストするために、軽量な方法論を使用します。
また,SUPERB-SGのタスク多様性とタスク監督の限定が,モデル表現の一般化性を評価する効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-03-14T04:26:40Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Self-supervised Pre-training with Hard Examples Improves Visual
Representations [110.23337264762512]
自己教師付き事前学習(ssp)は、ランダムな画像変換を用いて視覚表現学習のためのトレーニングデータを生成する。
まず,既存のSSPメソッドを擬似ラベル予測学習として統合するモデリングフレームワークを提案する。
そこで本研究では,疑似ラベルの予測が難しい学習例をランダムな画像変換で生成するデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2020-12-25T02:44:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。