Fully Hyperbolic Rotation for Knowledge Graph Embedding
- URL: http://arxiv.org/abs/2411.03622v2
- Date: Thu, 07 Nov 2024 03:26:58 GMT
- Title: Fully Hyperbolic Rotation for Knowledge Graph Embedding
- Authors: Qiuyu Liang, Weihua Wang, Feilong Bao, Guanglai Gao,
- Abstract summary: We propose a novel fully hyperbolic model designed for knowledge graph embedding.
Our model considers each relation in knowledge graphs as a Lorentz rotation from the head entity to the tail entity.
Our model achieves competitive results with fewer parameters.
- Score: 12.69417276887153
- License:
- Abstract: Hyperbolic rotation is commonly used to effectively model knowledge graphs and their inherent hierarchies. However, existing hyperbolic rotation models rely on logarithmic and exponential mappings for feature transformation. These models only project data features into hyperbolic space for rotation, limiting their ability to fully exploit the hyperbolic space. To address this problem, we propose a novel fully hyperbolic model designed for knowledge graph embedding. Instead of feature mappings, we define the model directly in hyperbolic space with the Lorentz model. Our model considers each relation in knowledge graphs as a Lorentz rotation from the head entity to the tail entity. We adopt the Lorentzian version distance as the scoring function for measuring the plausibility of triplets. Extensive results on standard knowledge graph completion benchmarks demonstrated that our model achieves competitive results with fewer parameters. In addition, our model get the state-of-the-art performance on datasets of CoDEx-s and CoDEx-m, which are more diverse and challenging than before. Our code is available at https://github.com/llqy123/FHRE.
Related papers
- Shedding Light on Problems with Hyperbolic Graph Learning [2.3743504594834635]
Recent papers in the graph machine learning literature have introduced a number of approaches for hyperbolic representation learning.
We take a careful look at the field of hyperbolic graph representation learning as it stands today.
We find that a number of papers fail to diligently present baselines, make faulty modelling assumptions when constructing algorithms, and use misleading metrics to quantify geometry of graph datasets.
arXiv Detail & Related papers (2024-11-11T03:12:41Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD) is a generative model specifically designed to handle the diverse nature of graph data.
We propose a modulation technique that enhances the realism of generated graphs by stabilizing critical graph topology.
arXiv Detail & Related papers (2024-06-13T17:42:57Z) - Hyperbolic Delaunay Geometric Alignment [52.835250875177756]
We propose a similarity score for comparing datasets in a hyperbolic space.
The core idea is counting the edges of the hyperbolic Delaunay graph connecting datapoints across the given sets.
We provide an empirical investigation on synthetic and real-life biological data and demonstrate that HyperDGA outperforms the hyperbolic version of classical distances between sets.
arXiv Detail & Related papers (2024-04-12T17:14:58Z) - GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts [75.51612253852002]
GraphMETRO is a Graph Neural Network architecture that models natural diversity and captures complex distributional shifts.
GraphMETRO achieves state-of-the-art results on four datasets from the GOOD benchmark.
arXiv Detail & Related papers (2023-12-07T20:56:07Z) - Lorentz Equivariant Model for Knowledge-Enhanced Hyperbolic
Collaborative Filtering [19.57064597050846]
We introduce prior auxiliary information from the knowledge graph (KG) to assist the user-item graph.
We propose a rigorously Lorentz group equivariant knowledge-enhanced collaborative filtering model (LECF)
We show that LECF remarkably outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-09T10:20:23Z) - Hyperbolic Vision Transformers: Combining Improvements in Metric
Learning [116.13290702262248]
We propose a new hyperbolic-based model for metric learning.
At the core of our method is a vision transformer with output embeddings mapped to hyperbolic space.
We evaluate the proposed model with six different formulations on four datasets.
arXiv Detail & Related papers (2022-03-21T09:48:23Z) - Enhancing Hyperbolic Graph Embeddings via Contrastive Learning [7.901082408569372]
We propose a novel Hyperbolic Graph Contrastive Learning (HGCL) framework which learns node representations through multiple hyperbolic spaces.
Experimental results on multiple real-world datasets demonstrate the superiority of the proposed HGCL.
arXiv Detail & Related papers (2022-01-21T06:10:05Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily.
We propose a novel framework called textitgraphon autoencoder to build an interpretable and scalable graph generative model.
A linear graphon factorization model works as a decoder, leveraging the latent representations to reconstruct the induced graphons.
arXiv Detail & Related papers (2021-05-29T08:11:40Z) - Unit Ball Model for Hierarchical Embeddings in Complex Hyperbolic Space [28.349200177632852]
Learning the representation of data with hierarchical structures in the hyperbolic space attracts increasing attention in recent years.
We propose to learn the graph embeddings in the unit ball model of the complex hyperbolic space.
arXiv Detail & Related papers (2021-05-09T16:09:54Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
We develop graph neural networks that leverage the properties of hypercomplex feature transformation.
In particular, in our proposed class of models, the multiplication rule specifying the algebra itself is inferred from the data during training.
We test our proposed hypercomplex GNN on several open graph benchmark datasets and show that our models reach state-of-the-art performance.
arXiv Detail & Related papers (2021-03-30T18:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.