論文の概要: The Essence of the Essence from the Web:The Metasearch Engine
- arxiv url: http://arxiv.org/abs/2411.03701v1
- Date: Wed, 06 Nov 2024 06:56:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-09 19:50:57.708554
- Title: The Essence of the Essence from the Web:The Metasearch Engine
- Title(参考訳): Webからのエッセンス:メタサーチエンジン
- Authors: Rajender Nath, Satinder Bal,
- Abstract要約: Metasearch Engineは、複数の検索エンジンに並列にクエリをディスパッチすることで、ユーザの負担を軽減する。
これらのエンジンはウェブページのデータベースを所有しておらず、検索エンジン会社が保持するデータベースに検索語を送信する。
本稿では,典型的なメタサーチエンジンの動作について述べるとともに,異なるパラメータに基づいて従来の検索エンジンとメタサーチエンジンの比較研究を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The exponential growth of information source on the web and in turn continuing technological progress of searching the information by using tools like Search Engines gives rise to many problems for the user to know which tool is best for their query and which tool is not. At this time Metasearch Engine comes into play by reducing the user burden by dispatching queries to multiple search engines in parallel and refining the results of these search engines to give the best out of best by doing superior job on their side. These engines do not own a database of Web pages rather they send search terms to the databases maintained by the search engine companies, get back results from all the search engines queried and then compile the results to be presented to the user. In this paper, we describe the working of a typical metasearch engine and then present a comparative study of traditional search engines and metasearch engines on the basis of different parameters and show how metasearch engines are better than the other search engines.
- Abstract(参考訳): Web上の情報ソースの指数関数的な成長と、検索エンジンのようなツールを使って情報検索の技術的進歩は、ユーザがどのツールがクエリに最適なツールで、どのツールがそうでないかを知るための多くの問題を引き起こします。
この時点でMetasearch Engineは、複数の検索エンジンに並列にクエリをディスパッチすることでユーザの負担を減らし、これらの検索エンジンの結果を精査し、彼らの側で優れた仕事をすることでベストを尽くす。
これらの検索エンジンは、Webページのデータベースを所有しておらず、検索エンジン会社が保持するデータベースに検索語を送り、クエリしたすべての検索エンジンから結果を取得し、その結果をユーザーに提示する。
本稿では,典型的なメタサーチエンジンの動作について述べるとともに,異なるパラメータに基づいて従来の検索エンジンとメタサーチエンジンの比較研究を行い,メタサーチエンジンが他の検索エンジンよりも優れていることを示す。
関連論文リスト
- MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines [91.08394877954322]
大規模マルチモーダルモデル(LMM)は、AI検索エンジンにおいて目覚ましい進歩を遂げた。
しかし、AI検索エンジンとして機能するかどうかはまだ未定だ。
まず,マルチモーダル検索機能を備えた任意のLMMに対して,センシティブなパイプラインMMSearch-Engineを設計する。
論文 参考訳(メタデータ) (2024-09-19T17:59:45Z) - Tree Search for Language Model Agents [69.43007235771383]
対話型Web環境での探索と多段階計画を行うために,LMエージェントの推論時探索アルゴリズムを提案する。
我々のアプローチは、実環境空間内で機能する最優先木探索の一形態である。
現実的なWebタスクにおいて有効性を示すLMエージェントのための最初の木探索アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-01T17:07:55Z) - When Search Engine Services meet Large Language Models: Visions and Challenges [53.32948540004658]
本稿では,大規模言語モデルと検索エンジンの統合が,両者の相互に利益をもたらすかどうかを詳細に検討する。
LLM(Search4LLM)の改良と,LLM(LLM4Search)を用いた検索エンジン機能の向上という,2つの主要な領域に注目した。
論文 参考訳(メタデータ) (2024-06-28T03:52:13Z) - Enhanced Facet Generation with LLM Editing [5.4327243200369555]
情報検索においては,ユーザクエリのファセット識別が重要な課題である。
従来の研究は,検索によって得られた検索文書や関連クエリを活用することで,ファセット予測を強化することができる。
しかし、検索エンジンがモデルの一部として動作する場合、他のアプリケーションに拡張することは困難である。
論文 参考訳(メタデータ) (2024-03-25T00:43:44Z) - The Use of Generative Search Engines for Knowledge Work and Complex Tasks [26.583783763090732]
Bing Copilotを使うタスクのタイプと複雑さをBing Searchと比較して分析する。
発見は、従来の検索エンジンよりも認知の複雑さが高い知識作業タスクのために、人々が生成検索エンジンを使用していることを示している。
論文 参考訳(メタデータ) (2024-03-19T18:17:46Z) - GEO: Generative Engine Optimization [50.45232692363787]
我々は、生成エンジン(GE)の統一的な枠組みを定式化する。
GEは大規模な言語モデル(LLM)を使用して情報を収集し、ユーザクエリに応答する。
生成エンジンは通常、複数のソースから情報を合成し、それらを要約することでクエリを満足する。
我々は、生成エンジン応答におけるコンテンツの可視性向上を支援するために、コンテンツ作成者を支援する最初の新しいパラダイムである生成エンジン最適化(GEO)を紹介する。
論文 参考訳(メタデータ) (2023-11-16T10:06:09Z) - User Attitudes to Content Moderation in Web Search [49.1574468325115]
我々は、Web検索における誤解を招く可能性のあるコンテンツや攻撃的なコンテンツに適用される様々なモデレーションプラクティスに対するサポートレベルについて検討する。
最も支持されている実践は、誤解を招く可能性のあるコンテンツや不快なコンテンツについてユーザーに知らせることであり、最も支持されていないものは、検索結果を完全に削除することである。
より保守的なユーザーやウェブ検索結果に対する信頼度が低いユーザーは、ウェブ検索におけるコンテンツモデレーションに反する傾向にある。
論文 参考訳(メタデータ) (2023-10-05T10:57:15Z) - Search Engine and Recommendation System for the Music Industry built
with JinaAI [0.0]
Jina AIは、ニューラルネットワークを構築するためのMLOpsフレームワークである。
Jina AIは、与えられたクエリの検索エンジンのパフォーマンスの維持と向上に有効である。
論文 参考訳(メタデータ) (2023-08-07T18:00:04Z) - Evaluating Verifiability in Generative Search Engines [70.59477647085387]
生成検索エンジンは、インラインの引用とともに、ユーザークエリへの応答を直接生成する。
我々は,一般的な4つの生成検索エンジンの評価を行う。
既存の生成検索エンジンからの応答は流動的であり、情報的に見えるが、しばしばサポートされていない文や不正確な引用を含んでいる。
論文 参考訳(メタデータ) (2023-04-19T17:56:12Z) - Boosting Search Engines with Interactive Agents [25.89284695491093]
本稿では,文脈的クエリ改善のためのメタストラテジーを学習するエージェントの設計における第一歩について述べる。
エージェントには単純だが効果的な検索操作者がいて、クエリや検索結果のきめ細やかで透明な制御を行う。
論文 参考訳(メタデータ) (2021-09-01T13:11:57Z) - Search Engine Similarity Analysis: A Combined Content and Rankings
Approach [6.69087470775851]
我々は、DuckDuckGoとともに、GoogleとBingという2つの主要な検索エンジンの親和性について分析する。
我々は、検索応答のコンテンツとランキングの両方を活用する新しい類似度指標を開発した。
しかしBingとDuckDuckGoは相違点が多い。
論文 参考訳(メタデータ) (2020-11-01T23:57:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。