論文の概要: NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA
- arxiv url: http://arxiv.org/abs/2411.03730v1
- Date: Wed, 06 Nov 2024 07:51:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:24:39.606755
- Title: NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA
- Title(参考訳): NeurIPS 2023コンペティション: フェデレーションラーニングドキュメンテーションVQAのプライバシ保護
- Authors: Marlon Tobaben, Mohamed Ali Souibgui, Rubèn Tito, Khanh Nguyen, Raouf Kerkouche, Kangsoo Jung, Joonas Jälkö, Lei Kang, Andrey Barsky, Vincent Poulain d'Andecy, Aurélie Joseph, Aashiq Muhamed, Kevin Kuo, Virginia Smith, Yusuke Yamasaki, Takumi Fukami, Kenta Niwa, Iifan Tyou, Hiro Ishii, Rio Yokota, Ragul N, Rintu Kutum, Josep Llados, Ernest Valveny, Antti Honkela, Mario Fritz, Dimosthenis Karatzas,
- Abstract要約: このコンペティションでは、関連する質問や回答とともに、本物の請求書文書のデータセットが導入された。
ベースモデルは多モード生成言語モデルであり、視覚的またはテキスト的入力モダリティによってセンシティブな情報を公開することができる。
参加者は最小限の効用閾値を維持しながら通信コストを削減するエレガントなソリューションを提案した。
- 参考スコア(独自算出の注目度): 49.74911193222192
- License:
- Abstract: The Privacy Preserving Federated Learning Document VQA (PFL-DocVQA) competition challenged the community to develop provably private and communication-efficient solutions in a federated setting for a real-life use case: invoice processing. The competition introduced a dataset of real invoice documents, along with associated questions and answers requiring information extraction and reasoning over the document images. Thereby, it brings together researchers and expertise from the document analysis, privacy, and federated learning communities. Participants fine-tuned a pre-trained, state-of-the-art Document Visual Question Answering model provided by the organizers for this new domain, mimicking a typical federated invoice processing setup. The base model is a multi-modal generative language model, and sensitive information could be exposed through either the visual or textual input modality. Participants proposed elegant solutions to reduce communication costs while maintaining a minimum utility threshold in track 1 and to protect all information from each document provider using differential privacy in track 2. The competition served as a new testbed for developing and testing private federated learning methods, simultaneously raising awareness about privacy within the document image analysis and recognition community. Ultimately, the competition analysis provides best practices and recommendations for successfully running privacy-focused federated learning challenges in the future.
- Abstract(参考訳): PFL-DocVQA(Privacy Preserving Federated Learning Document VQA)コンペティションは、実際のユースケースである請求処理(invoice processing)のためのフェデレーション環境で、証明可能なプライベートかつコミュニケーション効率の良いソリューションを開発するようコミュニティに訴えた。
このコンペティションでは、実際の請求書文書のデータセットと関連する質問と回答が提供され、文書イメージに対する情報抽出と推論が要求された。
これにより、ドキュメント分析、プライバシ、フェデレーション付き学習コミュニティから研究者と専門知識が集められる。
参加者は、この新しいドメインのオーガナイザによって提供される、訓練済み、最先端のドキュメントビジュアル質問回答モデルを微調整し、典型的なフェデレートされた請求処理のセットアップを模倣した。
ベースモデルは多モード生成言語モデルであり、視覚的またはテキスト的入力モダリティによってセンシティブな情報を公開することができる。
参加者は、トラック1における最小ユーティリティ閾値を維持しつつ、通信コストを削減するためのエレガントなソリューションを提案し、トラック2における差分プライバシを使用して、各ドキュメントプロバイダからすべての情報を保護した。
このコンペティションは、プライベートなフェデレーション付き学習手法の開発とテストのための新しいテストベッドとして機能し、同時にドキュメントイメージ分析と認識コミュニティ内のプライバシーに対する認識を高めた。
最終的に、コンペティション分析は、将来的にプライバシにフォーカスしたフェデレーション学習の課題をうまく実行するためのベストプラクティスと推奨を提供する。
関連論文リスト
- Towards Split Learning-based Privacy-Preserving Record Linkage [49.1574468325115]
ユーザデータのプライバシが要求されるアプリケーションを容易にするために、Split Learningが導入されている。
本稿では,プライバシ保護記録マッチングのための分割学習の可能性について検討する。
論文 参考訳(メタデータ) (2024-09-02T09:17:05Z) - A Multivocal Literature Review on Privacy and Fairness in Federated Learning [1.6124402884077915]
フェデレーション学習は、データ共有の必要性を排除することによって、AIアプリケーションに革命をもたらす手段を提供する。
最近の研究では、プライバシと公平性の間に固有の緊張が示されています。
プライバシーと公正性の関係は無視され、現実世界のアプリケーションにとって重大なリスクをもたらしている、と我々は主張する。
論文 参考訳(メタデータ) (2024-08-16T11:15:52Z) - Pencil: Private and Extensible Collaborative Learning without the Non-Colluding Assumption [24.339382371386876]
Pencilは、データプライバシ、モデルのプライバシ、拡張性を複数のデータプロバイダに同時に提供する、共同学習のための最初のプライベートトレーニングフレームワークである。
この設計原則を実現し、厳密なセキュリティとプライバシ分析を行うために、新しい暗号プロトコルをいくつか導入する。
Pencilは10260倍のスループットと2桁の通信速度を実現している。
論文 参考訳(メタデータ) (2024-03-17T10:26:41Z) - Privacy-Aware Document Visual Question Answering [44.82362488593259]
この研究はDocVQAで使用されるマルチモーダルLLMモデルの現状におけるプライバシー問題を強調している。
本稿では,請求書と関連する質問と回答を含む大規模DocVQAデータセットを提案する。
プライベートでないモデルは記憶に残る傾向があり、プライベートな情報が露出する可能性があることを実証する。
論文 参考訳(メタデータ) (2023-12-15T06:30:55Z) - SynFacePAD 2023: Competition on Face Presentation Attack Detection Based
on Privacy-aware Synthetic Training Data [51.42380508231581]
バイオメトリックス国際会議(IJCB 2023)におけるプライバシ・アウェア・シンセティック・トレーニングデータ(SynFacePAD 2023)に基づく顔提示攻撃検出コンペティションの概要を述べる。
このコンペティションは、個人データに関連するプライバシー、法的、倫理的懸念に動機づけられた、合成ベースのトレーニングデータを考慮して、顔の提示攻撃を検出するソリューションを動機付け、誘致することを目的としている。
提案されたソリューションはイノベーションと新しいアプローチを示し、調査されたベンチマークで考慮されたベースラインを上回りました。
論文 参考訳(メタデータ) (2023-11-09T13:02:04Z) - Practical Vertical Federated Learning with Unsupervised Representation
Learning [47.77625754666018]
フェデレートされた学習は、複数のパーティが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
我々はFedOnceという,一対一のコミュニケーションしか必要としない新しいコミュニケーション効率の縦型学習アルゴリズムを提案する。
私たちのプライバシー保護技術は、同じプライバシー予算の下で最先端のアプローチを著しく上回ります。
論文 参考訳(メタデータ) (2022-08-13T08:41:32Z) - Algorithmic Fairness Datasets: the Story so Far [68.45921483094705]
データ駆動アルゴリズムは、人々の幸福に直接影響し、批判的な決定をサポートするために、さまざまな領域で研究されている。
研究者のコミュニティは、既存のアルゴリズムの株式を調査し、新しいアルゴリズムを提案し、歴史的に不利な人口に対する自動意思決定のリスクと機会の理解を深めてきた。
公正な機械学習の進歩はデータに基づいており、適切に文書化された場合にのみ適切に使用できる。
残念なことに、アルゴリズムフェアネスコミュニティは、特定のリソース(オパシティ)に関する情報の不足と利用可能な情報の分散(スパーシティ)によって引き起こされる、集合的なデータドキュメント負債に悩まされている。
論文 参考訳(メタデータ) (2022-02-03T17:25:46Z) - Privacy and Trust Redefined in Federated Machine Learning [5.4475482673944455]
参加者間の信頼できるフェデレーション学習を容易にするプライバシー保護型分散型ワークフローを紹介します。
適切な当局から発行された認証クレデンシャルを保有する団体のみが、安全で認証された通信チャネルを確立することができる。
論文 参考訳(メタデータ) (2021-03-29T16:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。