論文の概要: Towards Split Learning-based Privacy-Preserving Record Linkage
- arxiv url: http://arxiv.org/abs/2409.01088v1
- Date: Mon, 2 Sep 2024 09:17:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:38:47.733015
- Title: Towards Split Learning-based Privacy-Preserving Record Linkage
- Title(参考訳): 分散学習に基づくプライバシ保護記録リンクの実現に向けて
- Authors: Michail Zervas, Alexandros Karakasidis,
- Abstract要約: ユーザデータのプライバシが要求されるアプリケーションを容易にするために、Split Learningが導入されている。
本稿では,プライバシ保護記録マッチングのための分割学習の可能性について検討する。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Split Learning has been recently introduced to facilitate applications where user data privacy is a requirement. However, it has not been thoroughly studied in the context of Privacy-Preserving Record Linkage, a problem in which the same real-world entity should be identified among databases from different dataholders, but without disclosing any additional information. In this paper, we investigate the potentials of Split Learning for Privacy-Preserving Record Matching, by introducing a novel training method through the utilization of Reference Sets, which are publicly available data corpora, showcasing minimal matching impact against a traditional centralized SVM-based technique.
- Abstract(参考訳): ユーザデータのプライバシが要求されるアプリケーションを容易にするために、Split Learningが最近導入された。
しかし、プライバシ保存記録リンク(Privacy-Preserving Record Linkage)は、異なるデータ所有者のデータベース間で同一の現実世界のエンティティを識別する問題であるが、追加情報は開示されていない。
本稿では,プライバシ保存記録マッチングのための分割学習の可能性について検討し,従来型の集中型SVM技術に対する最小のマッチング効果を示す参照セットの利用を通じて,新たなトレーニング手法を導入する。
関連論文リスト
- Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
我々は、信頼された中央サーバを仮定することなく、各データセットに対するプライバシー保証を提供する、テキストフェデレーションによる差分プライバシーの概念を定式化する。
フェデレートされた差分プライバシは、確立されたローカルと中央の差分プライバシモデルの間の中間プライバシモデルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:04:48Z) - Using Decentralized Aggregation for Federated Learning with Differential
Privacy [0.32985979395737774]
フェデレートラーニング(FL)は、データをローカルノードに保持することで、ある程度のプライバシーを提供する。
本研究は、ベンチマークデータセットを用いて、差分プライバシー(DP)を用いたFL実験環境をデプロイする。
論文 参考訳(メタデータ) (2023-11-27T17:02:56Z) - A Cautionary Tale: On the Role of Reference Data in Empirical Privacy
Defenses [12.34501903200183]
本稿では,トレーニングデータと参照データの両方に関して,ユーティリティプライバシトレードオフを容易に理解可能なベースラインディフェンスを提案する。
私たちの実験では、驚くべきことに、最もよく研究され、現在最先端の実証的なプライバシー保護よりも優れています。
論文 参考訳(メタデータ) (2023-10-18T17:07:07Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
本稿では,UFed-GAN: Unsupervised Federated Generative Adversarial Networkを提案する。
実験により,プライバシを保ちながら,限られた計算資源とラベルなしデータに対処するUFed-GANの強い可能性を示す。
論文 参考訳(メタデータ) (2023-08-10T22:52:13Z) - No free lunch theorem for security and utility in federated learning [20.481170500480395]
複数のパーティがそれぞれのデータからモデルを共同で学習するフェデレートされた学習シナリオでは、適切なアルゴリズムを選択するための2つの相反する目標が存在する。
本稿では、プライバシ損失とユーティリティ損失のトレードオフを統一情報理論の観点から定式化する一般的なフレームワークについて説明する。
論文 参考訳(メタデータ) (2022-03-11T09:48:29Z) - FedEmbed: Personalized Private Federated Learning [13.356624498247069]
我々は、グローバルなモデルをパーソナライズするための個人的フェデレーション学習の新しいアプローチであるFedEmbedを紹介する。
我々はFedEmbedが、個人化された個人的フェデレーション学習に対するベースラインアプローチよりも最大45%改善していることを示す。
論文 参考訳(メタデータ) (2022-02-18T23:35:06Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
本稿では,匿名化中間表現を用いたタスク非依存型プライバシ参照データクラウドソーシングフレームワークTIPRDCを提案する。
このフレームワークの目的は、中間表現からプライバシー情報を隠蔽できる機能抽出器を学習することであり、データコレクターの生データに埋め込まれた元の情報を最大限に保持し、未知の学習タスクを達成することである。
論文 参考訳(メタデータ) (2020-05-23T06:21:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。