論文の概要: Optimal Defenses Against Gradient Reconstruction Attacks
- arxiv url: http://arxiv.org/abs/2411.03746v1
- Date: Wed, 06 Nov 2024 08:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:25:03.189422
- Title: Optimal Defenses Against Gradient Reconstruction Attacks
- Title(参考訳): 順応的再建攻撃に対する最適防御
- Authors: Yuxiao Chen, Gamze Gürsoy, Qi Lei,
- Abstract要約: Federated Learning (FL) は、集中型データストレージを使わずに、協調的なモデルトレーニングによってデータ漏洩を防止するように設計されている。
共有勾配から元のトレーニングデータを復元する勾配再構築攻撃には、依然として脆弱である。
- 参考スコア(独自算出の注目度): 13.728704430883987
- License:
- Abstract: Federated Learning (FL) is designed to prevent data leakage through collaborative model training without centralized data storage. However, it remains vulnerable to gradient reconstruction attacks that recover original training data from shared gradients. To optimize the trade-off between data leakage and utility loss, we first derive a theoretical lower bound of reconstruction error (among all attackers) for the two standard methods: adding noise, and gradient pruning. We then customize these two defenses to be parameter- and model-specific and achieve the optimal trade-off between our obtained reconstruction lower bound and model utility. Experimental results validate that our methods outperform Gradient Noise and Gradient Pruning by protecting the training data better while also achieving better utility.
- Abstract(参考訳): Federated Learning (FL) は、集中型データストレージを使わずに、協調的なモデルトレーニングによってデータ漏洩を防止するように設計されている。
しかし、共有勾配から元のトレーニングデータを復元する勾配再構築攻撃には弱いままである。
データリークとユーティリティ損失のトレードオフを最適化するために、まず、ノイズの追加と勾配プルーニングという2つの標準的な方法に対して、理論的に低いリコンストラクションエラー(全攻撃者を含む)を導出する。
次に、これらの2つのディフェンスをパラメータとモデル固有のものにカスタマイズし、得られたリコンストラクションの下限とモデルユーティリティの最適なトレードオフを実現する。
実験結果から, トレーニングデータの保護を向上し, 実用性も向上し, グラディエントノイズやグラディエントプルーニングよりも優れた性能が得られた。
関連論文リスト
- GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Refiner: Data Refining against Gradient Leakage Attacks in Federated
Learning [28.76786159247595]
グラデーションリーク攻撃は クライアントのアップロードした勾配を利用して 機密データを再構築する
本稿では,従来の勾配摂動から分離した新しい防御パラダイムについて検討する。
プライバシ保護とパフォーマンス維持のための2つのメトリクスを共同で最適化するRefinerを設計する。
論文 参考訳(メタデータ) (2022-12-05T05:36:15Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - Combining Variational Modeling with Partial Gradient Perturbation to
Prevent Deep Gradient Leakage [0.6021787236982659]
勾配反転攻撃は、ニューラルネットワークの協調学習において、ユビキタスな脅威である。
最近の研究は、任意のモデルアーキテクチャの拡張としてPPPalモデリングに基づくPRECODE(PRivacy EnhanCing mODulE)を提案する。
本研究では,PreCODEが勾配反転攻撃に与える影響について検討し,その基礎となる動作原理を明らかにする。
モデル性能を損なうことなく、効果的にプライバシを保護するために、我々のアプローチは勾配の摂動を少なくすることを示した。
論文 参考訳(メタデータ) (2022-08-09T13:23:29Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - CAFE: Catastrophic Data Leakage in Vertical Federated Learning [65.56360219908142]
近年の研究では、分散機械学習システムにデプロイされた勾配共有機構を通じて、プライベートトレーニングデータがリークされることが示されている。
本稿では,共有集約勾配からバッチデータを効率よく回収する理論的正当性を持つ高度なデータ漏洩攻撃を提案する。
論文 参考訳(メタデータ) (2021-10-26T23:22:58Z) - PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage [0.8029049649310213]
ニューラルネットワークの協調トレーニングは、異なるクライアント間で勾配情報を交換することで、分散データを活用する。
プライバシーを高めるために勾配摂動技術が提案されているが、モデル性能の低下、収束時間の増加、データ要求の増加といったコストが伴う。
任意のモデルアーキテクチャの汎用拡張として使用できるPRivacy EnhanCing mODulEであるPrepreCODEを紹介する。
論文 参考訳(メタデータ) (2021-08-10T14:43:17Z) - R-GAP: Recursive Gradient Attack on Privacy [5.687523225718642]
フェデレートラーニング(Federated Learning)は、プライバシの要求と、分散データの大規模なコレクションから学ぶという約束の間のジレンマを打破する、有望なアプローチである。
ディープニューラルネットワークの勾配からデータを復元するクローズドフォーム再帰法を提案する。
また,特定のネットワークアーキテクチャに固有の勾配攻撃のリスクを推定するランク解析手法を提案する。
論文 参考訳(メタデータ) (2020-10-15T13:22:40Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。