論文の概要: Sub-DM:Subspace Diffusion Model with Orthogonal Decomposition for MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2411.03758v1
- Date: Wed, 06 Nov 2024 08:33:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:24:08.069008
- Title: Sub-DM:Subspace Diffusion Model with Orthogonal Decomposition for MRI Reconstruction
- Title(参考訳): MRI再建のための直交分解を用いたサブDM:サブスペース拡散モデル
- Authors: Yu Guan, Qinrong Cai, Wei Li, Qiuyun Fan, Dong Liang, Qiegen Liu,
- Abstract要約: サブスペース拡散モデル (Sub-DM) は、k空間のデータ分布がノイズに向かって進化するにつれて、サブスペースへの射影による拡散過程を制限するサブスペース拡散モデルである。
k空間データのコンプレックスと高次元特性によって引き起こされる推論問題を回避する。
これにより、異なる空間における拡散過程が相互フィードバック機構を通じてモデルを洗練することができ、複雑なk空間データを扱う場合でも、アクカレートの事前学習が可能になる。
- 参考スコア(独自算出の注目度): 13.418240070456987
- License:
- Abstract: Diffusion model-based approaches recently achieved re-markable success in MRI reconstruction, but integration into clinical routine remains challenging due to its time-consuming convergence. This phenomenon is partic-ularly notable when directly apply conventional diffusion process to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. To tackle these challenges, we introduce subspace diffusion model with orthogonal decomposition, a method (referred to as Sub-DM) that restrict the diffusion process via projections onto subspace as the k-space data distribution evolves toward noise. Particularly, the subspace diffusion model circumvents the inference challenges posed by the com-plex and high-dimensional characteristics of k-space data, so the highly compact subspace ensures that diffusion process requires only a few simple iterations to produce accurate prior information. Furthermore, the orthogonal decomposition strategy based on wavelet transform hin-ders the information loss during the migration of the vanilla diffusion process to the subspace. Considering the strate-gy is approximately reversible, such that the entire pro-cess can be reversed. As a result, it allows the diffusion processes in different spaces to refine models through a mutual feedback mechanism, enabling the learning of ac-curate prior even when dealing with complex k-space data. Comprehensive experiments on different datasets clearly demonstrate that the superiority of Sub-DM against state of-the-art methods in terms of reconstruction speed and quality.
- Abstract(参考訳): 拡散モデルに基づくアプローチは、最近MRI再建において目覚ましい成功を収めたが、その時間を要する収束のために臨床ルーチンへの統合は難しいままである。
この現象は、k空間サンプリングの性質、k空間学習効率の制限、画像再構成品質を考慮せずに、k空間データに従来の拡散過程を直接適用する場合に顕著である。
これらの課題に対処するために,k空間データ分布が雑音に向かって進化するにつれて,部分空間への射影による拡散過程を制限する手法である,直交分解を伴う部分空間拡散モデルを導入する。
特に、部分空間拡散モデルは、k空間データの複素および高次元特性によって引き起こされる推論問題を回避するため、非常にコンパクトな部分空間は、正確な事前情報を生成するために、ほんの数回の単純な反復しか必要としない。
さらに、ウェーブレット変換に基づく直交分解戦略は、バニラ拡散過程のサブスペースへの移行時の情報損失を抑える。
ストラテジーがほぼ可逆であることを考えると、プロシース全体の逆転が可能である。
結果として、異なる空間における拡散過程が相互フィードバック機構を通じてモデルを洗練し、複雑なk空間データを扱う場合でも、アクカレートの事前学習を可能にする。
異なるデータセットに対する包括的実験は、再構築速度と品質の観点から、サブDMが最先端の手法に対して優位であることを明確に示している。
関連論文リスト
- Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
逆問題に対する拡散状態ガイド型射影勾配(DiffStateGrad)を提案する。
DiffStateGrad は拡散過程の中間状態の低ランク近似である部分空間に測定勾配を投影する。
DiffStateGradは、測定手順のステップサイズとノイズの選択によって拡散モデルのロバスト性を向上させる。
論文 参考訳(メタデータ) (2024-10-04T14:26:54Z) - Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups [37.78638937228254]
本稿では、自明化と呼ばれる手法がユークリッド空間における拡散モデルの有効性をリー群に伝達する方法を示す。
モーメント変数は、データ分布と固定されたサンプル分布の間の位置変数の移動を支援するためにアルゴリズムによって導入された。
得られた方法は、タンパク質およびRNAのねじれ角の生成および洗練されたトーラスデータセットに対する最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-05-25T23:53:07Z) - Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction [4.227116189483428]
本研究は, 離散性緩和フレームワークを用いた新規なカスケード拡散について紹介する。
潜在空間の低画質画像生成と画素空間の高画質画像生成を含む。
これは、いくつかの推論ステップをピクセル空間から潜在空間に移すことによって計算コストを最小化する。
論文 参考訳(メタデータ) (2024-03-14T12:58:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI [14.545736786515837]
本稿では,k空間の拡散モデルであるSPIRiT-Diffusionを紹介する。
3次元頭蓋内および頸動脈壁画像データセットを用いたSPIRiT-Diffusion法の評価を行った。
論文 参考訳(メタデータ) (2023-04-11T08:43:52Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
ハイパースペクトル画像復元のための自己教師付き拡散モデルを提案する。
textttDDS2Mは、既存の拡散法と比較して、より強力な一般化能力を持っている。
HSIのノイズ除去、ノイズ除去、様々なHSIの超解像実験は、既存のタスク固有状態よりもtextttDDS2Mの方が優れていることを示した。
論文 参考訳(メタデータ) (2023-03-12T14:57:04Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Dimensionality-Varying Diffusion Process [52.52681373641533]
拡散モデルは、信号破壊プロセスを逆転して新しいデータを生成することを学習する。
信号分解による前方拡散過程の理論的一般化を行う。
FFHQで訓練された拡散モデルのFIDを,52.40から10.46までの1024Times1024$解像度で改善する。
論文 参考訳(メタデータ) (2022-11-29T09:05:55Z) - High-Frequency Space Diffusion Models for Accelerated MRI [7.985113617260289]
連続微分方程式(SDE)を持つ拡散モデルは、画像生成において優れた性能を示す。
高周波空間における拡散過程と磁気共鳴(MR)再構成に適した新しいSDEを提案する。
このアプローチは、完全サンプリングされた低周波領域における決定性を保証し、逆拡散のサンプリング手順を加速する。
論文 参考訳(メタデータ) (2022-08-10T14:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。