Data Fusion of Synthetic Query Variants With Generative Large Language Models
- URL: http://arxiv.org/abs/2411.03881v1
- Date: Wed, 06 Nov 2024 12:54:27 GMT
- Title: Data Fusion of Synthetic Query Variants With Generative Large Language Models
- Authors: Timo Breuer,
- Abstract summary: This work explores the feasibility of using synthetic query variants generated by instruction-tuned Large Language Models in data fusion experiments.
We introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques.
Our analysis shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods.
- Score: 1.864807003137943
- License:
- Abstract: Considering query variance in information retrieval (IR) experiments is beneficial for retrieval effectiveness. Especially ranking ensembles based on different topically related queries retrieve better results than rankings based on a single query alone. Recently, generative instruction-tuned Large Language Models (LLMs) improved on a variety of different tasks in capturing human language. To this end, this work explores the feasibility of using synthetic query variants generated by instruction-tuned LLMs in data fusion experiments. More specifically, we introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques. In our experiments, LLMs produce more effective queries when provided with additional context information on the topic. Furthermore, our analysis based on four TREC newswire benchmarks shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods. We publicly share the code and query datasets with the community as resources for follow-up studies.
Related papers
- DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTriever is a novel demonstration retrieval framework that learns a weighted combination of hidden states.
Our method significantly outperforms the state-of-the-art baselines on one-shot NL2 tasks.
arXiv Detail & Related papers (2024-06-12T06:33:54Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
Large language models (LLMs) have enabled in-context learning (ICL)-based methods that significantly outperform fine-tuning approaches for text-to- tasks.
This study considers the sensitivity of LLMs to the prompts and introduces a novel approach that leverages multiple prompts to explore a broader search space for possible answers.
We establish a new SOTA performance on the BIRD in terms of both the accuracy and efficiency of the generated queries.
arXiv Detail & Related papers (2024-05-13T04:59:32Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
We introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations.
Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases.
arXiv Detail & Related papers (2024-02-09T11:23:14Z) - Large Language Model as Attributed Training Data Generator: A Tale of
Diversity and Bias [92.41919689753051]
Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks.
We investigate training data generation with diversely attributed prompts, which have the potential to yield diverse and attributed generated data.
We show that attributed prompts outperform simple class-conditional prompts in terms of the resulting model's performance.
arXiv Detail & Related papers (2023-06-28T03:31:31Z) - BitE : Accelerating Learned Query Optimization in a Mixed-Workload
Environment [0.36700088931938835]
BitE is a novel ensemble learning model using database statistics and metadata to tune a learned query for enhancing performance.
Our model achieves 19.6% more improved queries and 15.8% less regressed queries compared to the existing traditional methods.
arXiv Detail & Related papers (2023-06-01T16:05:33Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Querying Large Language Models with SQL [16.383179496709737]
In many use-cases, information is stored in text but not available in structured data.
With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents.
We present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM.
arXiv Detail & Related papers (2023-04-02T06:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.